CS 326: Pipes
2lpes

Lecture 9

Today's Agenda

= Pipes: The Basics
= |/O Streams
= Piping Data

CS 326: Operating Systems

Today's Agenda

= Pipes: The Basics
= |/O Streams
= Piping Data

CS 326: Operating Systems

Pipes [1/2]

Pipes are a common way for programs to communicate
on Unix systems

Most useful for sharing unstructured data (such a text)
between processes

They work like how they sound: if you want to send data
to another process, send it through the pipe

CS 326: Operating Systems

Pipes [2/2]

Pipes are one of the fundamental forms of Unix [PC

With pipes, we can “glue” several utilities together:

grep neato file.txt | sort

This will search for "neato” in file.txt and print each

match
Next, these matches get sent over to the ‘sort’

utility
We redirect the standard output stream into another

program!
Does not get displayed in the terminal

CS 326: Operating Systems

INn the Shell

As we've seen, pipes are used frequently in the shell

We can mix and match different utilities, and they all
work well together

Awesome!
Some genius must have designed all these programs to

work this way, right?
Well, no. They all just read from stdin and then write
to stdout (@nd stderr)

No coordination required between developers

CS 326: Operating Systems

To be clear...

When you enter ‘Is" in your shell, you're running a
program

This functionality is NOT built into your shell. Bash
simply finds and runs the ‘Is’ program. That's it!

So the most basic shell is:
fork()

exec()

Wait for the child process to finish

CS 326: Operating Systems

Sullt-Ins

There are some shell ‘commands” that actually aren't
programs, called built-ins

For example, history : printing previous commands
The shell knows what commands you've entered, so

having an external program do this would be...
somewhat questionable

And, obviously, exit

If you create a new process, it's not like it can quit for
the parent process, right?
Well, | guess there IS a way to do that...

CS 326: Operating Systems

Another Bullt-In: cd

Canyou think of why cd needs to be a built-in
command?

It's similar to the problem with exit
We can change the current directory of ourselves, but
not our parent

This is true for general Unix-based systems, but if we

think back to our discussion on clone() ...
...Linux allows us to actually share the CWD with our
parent (man pages of clone talk aboutthis cd case)

CS 326: Operating Systems

Going to the Source

| have posted a video from Bell Labs on the schedule
that discusses several design aspects of Unix

It's actually pretty interesting... well, at least as far as OS
content goes!

Discussion on pipes starts right around the 5 minute
mark

CS 326: Operating Systems 10

Another Take (Julia Evans)

Sous EVAnS

P | Pe S @b ork
dmwinﬂs .jvns, coL
Sometimes you want G pipe is o pair || when fs does
+O sena i-he M-Pi'f' o-fone O'F 2 maSi(Q, Nri‘]'e(.., “l'\i”)
Process 1o the mpﬁ of anather File descri pTorS WC can read it!
read (@)
3% | we -4 Gend @ - “hi"
53 ,‘("5\4 RN
\ 53 'Fi\esg Stdin ® o sYdout
PEPQ bU’f‘F@(‘S what if your you can P,pe
, target process dies? || S0 MANY Hhings
| LT goana write) together
a bAJil\.’on byies s wc
AN 7N | 8 albicidle
Yo @ a
o b ¢ f‘ e
k -_f 15 365 sen']' ‘ \: o, \0107\:.\"07\
Uh ngo iTmy N2
buffer is foll you ' SIGPIPE i @ gets p;}rs/{
have to wait Closed (X ysually dies) pipes

CS 326: Operating Systems

Today's Agenda

= Pipes: The Basics
= 1/0 Streams
= Piping Data

CS 326: Operating Systems

12

INnput/Output Streams

Each program gets allocated three streams by default:
stdout (Standard output)

stderr (Standard error)

stdin (standard input)

As with most things in Unix, these are represented as
files (via file descriptors)

These streams have different functions...

CS 326: Operating Systems

13

stdout

Whenyou call printf ,you are writing to stdout

This stream is designed for general program output; for
example, if you type 1s then the list of files should
display on stdout

You can pipe stdout to other programs:
ls -1 / | grep 'bin'

...or redirect to afile:
1s -1 / > 1list of_ files.txt

CS 326: Operating Systems

14

stderr

The standard error stream is used for diagnostic
information

This way, program output can still be passed to other

programs/files but we'll still see diagnostics printed to
the terminal

Helps us know when something went wrong

Unlike stdout , stderr is not buffered

CS 326: Operating Systems

15

stdin

The final stream, stdin, one way to provide program
iInput (via scanf , for example)

This can be entered by the user, or we can pipe input

directly into a program:
ls -1 / | grep 'bin'
1s -1 / —writesfile listto stdout

grep 'bin' —readsfilelistfrom stdin

CS 326: Operating Systems

16

forintf

We can control where printed output goes with
fprintf
File printf
stderr is actually a file — in fact, on Unix systems most

devices are represented as files
Try 1s /dev toview the devices onyour machine
(includes macQOS)

So if we want to write data to a file, just pass it in:
fprintf(file, "My name is: %s", "Bob");

CS 326: Operating Systems

17

Today's Agenda

= Pipes: The Basics
= |/O Streams
= Piping Data

CS 326: Operating Systems

18

The pipe system call

Now back to pipes: we can create them with the pipel)

system call
Returns a set of file descriptors: the input and output
sides of the pipe

Pipes aren't very useful if they aren't connected to

anything, though
We can do this by fork() ing another process

CS 326: Operating Systems 19

PiIping to Another Process

After calling fork() ,both processes have a copy of the
pipe file descriptors

Pipes only operate in one direction, though, so we need

to close the appropriate ends of the pipe
You can think of a forked() pipe as one with four ends:
two input and output ends each

We eliminate the ends we don't need to control the
direction of data flow

Amazing ASCIl art drawing: >---<

CS 326: Operating Systems 20

Controlling Flow

= To control data flow through the pipe, we close the ends
we won't use

= For example:
= Child process closes FD 0 and reads from FD 1

= Parent process closes FD 1 and writesto FD O

CS 326: Operating Systems

21

Async Process Creation

You may be wondering: what good are pipes when we
have to start all the cooperating processes?

There's actually another option: FIFOs, aka named
pipes

Create with the mkfifo command, then open as you
would a regular file descriptor

CS 326: Operating Systems

22

Redirecting Streams: dup

dup allows us to redirect streams by duplicating them
int dup(int fildes);

Let's say we want to make our standard output stream
go through the pipe we just created

We'll do:
close(fd[@]); // close read end of pipe

close(1l); // close stdout (fd 1)

dup(fd[1]); // stdout to pipe

CS 326: Operating Systems

23

What??

In the previous example, we redirected stdout to the
pipe by passing in the write end of the pipe’'s fd

dup duplicates its arg fd into the first unused file
descriptor

We made sure the first unused file descriptor is stdout
by closing it before the dup

CS 326: Operating Systems

24

dup?

Many operating systems also support dup2 to make
this a bit clearer

Here's an example of using dup2 to redirect to a file:
int output = open("output.txt",
O_CREAT | O_WRONLY | O_TRUNC, 0666);

dup2(output, STDOUT_FILENO),

Cool, right? Ok, let's try this out...

CS 326: Operating Systems

25

Demaos

= pipe.c
= jo-redir.c

= Shell commands

CS 326: Operating Systems

26

