
Pipes

CS 326: Pipes

Lecture 9

▪ Pipes: The Basics

▪ I/O Streams

▪ Piping Data

Today’s Agenda

CS 326: Operating Systems 2

▪ Pipes: The Basics

▪ I/O Streams

▪ Piping Data

Today’s Agenda

CS 326: Operating Systems 3

▪ Pipes are a common way for programs to communicate

on Unix systems

▪ Most useful for sharing unstructured data (such a text)

between processes

▪ They work like how they sound: if you want to send data

to another process, send it through the pipe

Pipes [1/2]

CS 326: Operating Systems 4

▪ Pipes are one of the fundamental forms of Unix IPC

▪ With pipes, we can “glue” several utilities together:

▪ grep neato file.txt | sort

▪ This will search for “neato” in file.txt and print each

match

▪ Next, these matches get sent over to the ‘sort’

utility

▪ We redirect the standard output stream into another

program!

▪ Does not get displayed in the terminal

Pipes [2/2]

CS 326: Operating Systems 5

▪ As we’ve seen, pipes are used frequently in the shell

▪ We can mix and match different utilities, and they all

work well together

▪ Awesome!

▪ Some genius must have designed all these programs to

work this way, right?

▪ Well, no. They all just read from stdin and then write

to stdout (and stderr)

▪ No coordination required between developers

In the Shell

CS 326: Operating Systems 6

▪ When you enter ‘ls’ in your shell, you’re running a

program

▪ This functionality is NOT built into your shell. Bash

simply finds and runs the ‘ls’ program. That’s it!

▪ So the most basic shell is:

▪ fork()

▪ exec()

▪ Wait for the child process to finish

To be clear…

CS 326: Operating Systems 7

▪ There are some shell “commands” that actually aren’t

programs, called built-ins

▪ For example, history : printing previous commands

▪ The shell knows what commands you’ve entered, so

having an external program do this would be…

somewhat questionable

▪ And, obviously, exit
▪ If you create a new process, it’s not like it can quit for

the parent process, right?

▪ Well, I guess there IS a way to do that…

Built-Ins

CS 326: Operating Systems 8

▪ Can you think of why cd needs to be a built-in

command?

▪ It’s similar to the problem with exit

▪ We can change the current directory of ourselves, but

not our parent

▪ This is true for general Unix-based systems, but if we

think back to our discussion on clone() …

▪ …Linux allows us to actually share the CWD with our

parent (man pages of clone talk about this cd case)

Another Built-In: cd

CS 326: Operating Systems 9

▪ I have posted a video from Bell Labs on the schedule

that discusses several design aspects of Unix

▪ It’s actually pretty interesting… well, at least as far as OS

content goes!

▪ Discussion on pipes starts right around the 5 minute

mark

Going to the Source

CS 326: Operating Systems 10

Another Take (Julia Evans)

CS 326: Operating Systems 11

▪ Pipes: The Basics

▪ I/O Streams

▪ Piping Data

Today’s Agenda

CS 326: Operating Systems 12

▪ Each program gets allocated three streams by default:

▪ stdout (standard output)

▪ stderr (standard error)

▪ stdin (standard input)

▪ As with most things in Unix, these are represented as

files (via file descriptors)

▪ These streams have different functions…

Input/Output Streams

CS 326: Operating Systems 13

▪ When you call printf , you are writing to stdout

▪ This stream is designed for general program output; for

example, if you type ls then the list of files should

display on stdout

▪ You can pipe stdout to other programs:

▪ ls -l / | grep 'bin'

▪ …or redirect to a file:

▪ ls -l / > list_of_files.txt

stdout

CS 326: Operating Systems 14

▪ The standard error stream is used for diagnostic

information

▪ This way, program output can still be passed to other

programs/files but we’ll still see diagnostics printed to

the terminal

▪ Helps us know when something went wrong

▪ Unlike stdout , stderr is not buffered

stderr

CS 326: Operating Systems 15

▪ The final stream, stdin, one way to provide program

input (via scanf , for example)

▪ This can be entered by the user, or we can pipe input

directly into a program:

▪ ls -l / | grep 'bin'
▪ ls -l / – writes file list to stdout

▪ grep 'bin' – reads file list from stdin

stdin

CS 326: Operating Systems 16

▪ We can control where printed output goes with

fprintf
▪ File printf

▪ stderr is actually a file – in fact, on Unix systems most

devices are represented as files

▪ Try ls /dev to view the devices on your machine

(includes macOS)

▪ So if we want to write data to a file, just pass it in:

▪ fprintf(file, "My name is: %s", "Bob");

fprintf

CS 326: Operating Systems 17

▪ Pipes: The Basics

▪ I/O Streams

▪ Piping Data

Today’s Agenda

CS 326: Operating Systems 18

▪ Now back to pipes: we can create them with the pipe()

system call

▪ Returns a set of file descriptors: the input and output

sides of the pipe

▪ Pipes aren’t very useful if they aren’t connected to

anything, though

▪ We can do this by fork() ing another process

The pipe system call

CS 326: Operating Systems 19

▪ After calling fork() , both processes have a copy of the

pipe file descriptors

▪ Pipes only operate in one direction, though, so we need

to close the appropriate ends of the pipe

▪ You can think of a forked() pipe as one with four ends:

two input and output ends each

▪ We eliminate the ends we don’t need to control the

direction of data flow

▪ Amazing ASCII art drawing: >---<

Piping to Another Process

CS 326: Operating Systems 20

▪ To control data flow through the pipe, we close the ends

we won’t use

▪ For example:

▪ Child process closes FD 0 and reads from FD 1

▪ Parent process closes FD 1 and writes to FD 0

Controlling Flow

CS 326: Operating Systems 21

▪ You may be wondering: what good are pipes when we

have to start all the cooperating processes?

▪ There’s actually another option: FIFOs, aka named

pipes

▪ Create with the mkfifo command, then open as you

would a regular file descriptor

Async Process Creation

CS 326: Operating Systems 22

▪ dup allows us to redirect streams by duplicating them

▪ int dup(int fildes);

▪ Let’s say we want to make our standard output stream

go through the pipe we just created

▪ We’ll do:

▪ close(fd[0]); // close read end of pipe

▪ close(1); // close stdout (fd 1)

▪ dup(fd[1]); // stdout to pipe

Redirecting Streams: dup

CS 326: Operating Systems 23

▪ In the previous example, we redirected stdout to the

pipe by passing in the write end of the pipe’s fd

▪ dup duplicates its arg fd into the first unused file

descriptor

▪ We made sure the first unused file descriptor is stdout

by closing it before the dup

What??

CS 326: Operating Systems 24

▪ Many operating systems also support dup2 to make

this a bit clearer

▪ Here’s an example of using dup2 to redirect to a file:

▪ int output = open("output.txt",

O_CREAT | O_WRONLY | O_TRUNC, 0666);

▪ dup2(output, STDOUT_FILENO);

▪ Cool, right? Ok, let’s try this out…

dup2

CS 326: Operating Systems 25

▪ pipe.c

▪ io-redir.c

▪ Shell commands

Demos

CS 326: Operating Systems 26

