CS 326: Operating Systems

CPU Scheduling

Lecture 10



Today's Sereatte Agenda?

Context Switches and Interrupts

Basic Scheduling Algorithms
Scheduling with I/0O

Symmetric Multiprocessing

CS 326: Operating Systems



Today's Sereatte Agenda?

Context Switches and Interrupts

Basic Scheduling Algorithms
Scheduling with I/0O

Symmetric Multiprocessing

CS 326: Operating Systems



Context Switching

Changing execution from process to process requires
context switching

Saving and restoring the process control block
You may wonder if transitioning between user and

kernel space requires a context switch
In general, No

Only a privilege change occurs
Ring 3 > Ring O; or: User Mode > Superuser Mode

CS 326: Operating Systems



Reminder:

Process Control

Slock

= Call stack
= Heap

Metadata

Executable machine code

Memory (isolated from other processes)

= Permissions, ownership

= Open files and access isolation

= Environment variables

Context
= Registers

= Stack pointer, program counter

= Memory addressing

CS 326: Operating Systems



When to Switch

= How do we know when to context switch? Programs
dont have to do it...

= Accomplished via interrupts

= The OS configures a hardware timer to fire on a set

interval:
= “Interrupt CPU in X ms”

CS 326: Operating Systems



INnterrupt Handling

The CPU receives a hardware event every X ms
Trap table is used to determine what to do (what code
to run) when the hardware timer fires

This moves us back into kernel space

Then we can save the current PCB and replace it with

the next in the run queue

This is called preemptive multitasking
Processes do not have to explicitly yield control to
others!

CS 326: Operating Systems



Basic Scheduling

Vintage OS often used a very basic form of scheduling:
Running tasks sequentially (mainframes! punchcards!)

Cooperative multitasking

We can implement our very own user space “thread

library” by context switching within our own programs
Done by runtimes such as Go

CS 326: Operating Systems



Making Decisions

How do we decide what to run next?

Several scheduling algorithms exist, all with different
run time properties

Maybe you want your algorithm to be fair to all
Processes?

...0r certain processes may get higher priority than
others

CS 326: Operating Systems



Today's Sereatte Agenda?

Context Switches and Interrupts

Basic Scheduling Algorithms
Scheduling with I/0O

Symmetric Multiprocessing

CS 326: Operating Systems

10



Scheduling Concerns

How long each process runs for
Scheduling quantum

When jobs start or stop
At boot: lots of processes starting at once

During run time: less frequent start/stop
Whether the process performs |/O

Process priorities
Kernel threads, multimedia, games, etc.

CS 326: Operating Systems

11



Scheduling Metrics

CPU Utilization
Throughput

Turnaround time

Response time

CS 326: Operating Systems

12



Scheduling Metrics

CPU Utilization

= Amount of time the CPU spends doing productive

work
= A bad scheduler won't keep the CPU pipeline full of
tasks

= Utilization: 1 — t;4.

CS 326: Operating Systems

13



Scheduling Metrics

Throughput

= Number of processes that are completed per time
completed)
t

= Forinstance: 54 processes per second

unit; (

CS 326: Operating Systems

14



Scheduling Metrics

Turnaround Time
= Amount of time from process arrival to process
completion

* tturnaround = tcompletion — tarrival

CS 326: Operating Systems

15



Scheduling Metrics

Response Time
= How quickly a process starts running after it arrives
(submitted/launched)

. tresponse = tstart — Carrival

CS 326: Operating Systems

16



emo: a scheduler”

CS 326: Operating Systems

17



Basic Scheduling Algorithms

= FIFO

= SJF

- STCF

= Round Robin
= Priority

= Lottery

CS 326: Operating Systems

18



FIFO

The firstin, first out (FIFO) scheduler works just like a
gueue data structure

Processes are executed in the order they arrive:

If A arrives, followed by B:
A executes completely

B executes completely

Works reasonably well IF the processes run for about
the same amount of time

CS 326: Operating Systems

19



FIFO: Uniform Run Times

0 20 40 60 80
Time

CS 326: Operating Systems

100

120

20



FIFO Weaknesses

If one task takes a very long time, the other (shorter)

tasks will have to wait, and wait, and wait. ..
This is called the convoy effect

Here, the average process completion time is low
A process may only need 2 seconds to run, but waits
for 20 seconds before it can even start

CS 326: Operating Systems

21



Convoy

—ffect

CS 326: Operating Systems

40

60
Time

80

100

|
120

22



SJF

With shortest job first (SJF) scheduling, we don't have to
worry about long tasks causing a convoy

Assuming all the jobs are scheduled at the same time,
the smallest will be executed first
Little jobs get finished quickly

Long jobs are delayed, but the impact is not as
noticeable

CS 326: Operating Systems

23



SJF: Prioritize Small Tasks

B

0 20 40 60 80 100
Time

CS 326: Operating Systems

120

24



SJF Weaknesses

First of all, how can we really know how long a job will
take ahead of time?

This research question is still relevant today
If your OS routinely runs lots of small tasks and one
large task all at the same time, the larger task will always
have to wait

Once the large task is running, we'll still have a convoy
effect if we schedule new, smaller tasks

CS 326: Operating Systems

25



SJF: Late Arrivals

[B,C arrive]

0 20 40 60
Time

CS 326: Operating Systems

80

B

100

120

26



STCH

In the shortest time to completion first (STCF) algorithm,

we introduce preemption
Run whichever task will complete first and preempt
running processes that don't meet the criteria

In other words, this is SJF with preemption!
Now the large task causing the convoy effect can be
swapped out when small jobs arrive

This keeps average turnaround time high: most small
tasks will be taken care of quickly

CS 326: Operating Systems 27



STCF: Preemption

[B,C arrive]

AlB C A
0 20 40 60 80 100 120

Time

CS 326: Operating Systems

28



STCF Weaknesses

= STCF de-prioritizes large tasks the most

~
| 33

= Poor large tasks!

= We also have a problem with resource starvation
= If the OS continuously receives small tasks, the large
task may never get a turn to execute

CS 326: Operating Systems

29



Round Robin

Round robin scheduling tries to be as fair as possible

Using preemption, all processes get a scheduling
guantum (time slice)

If | have 10 processes and a guantum of Tms, then ['ll
run each process for Tms for each iteration of the

algorithm
After one pass completes, start back over again

CS 326: Operating Systems 30



Round Robin: Response Time

ABCABCABCABCABC

25

0 S) 10 15 20

Time

CS 326: Operating Systems

30

31



Round Robin Weaknesses

While RR is fair, the scheduling quantum has a big

impact on performance
Too small? Not much actual work getting done, most
effort expended on context switching

Too large”? Programs aren't responsive
Exhibits poor turnaround time

As the number of processes grows, response time can
also begin to take a hit

CS 326: Operating Systems

32



Priority Scheduling

Priority based scheduling allows some tasks to be
considered more “important” than others

In this scheme, a number is assigned to the process to
designate its priority

The scheduler sorts tasks by their priorities and
executes them in that order

Unix systems: process nice level

CS 326: Operating Systems

33



L ottery Scheduling

With lottery scheduling, each process is allocated
lottery tickets

The scheduler picks a number at random, and the
winning ticket gets the CPU

The more tickets a process has, the higher the chance it

will be scheduled
This lets us allocate tickets to assign CPU priorities

Want to give a process 30% of the CPU? Give it 30%
of the overall number of tickets

CS 326: Operating Systems

34



| ottery Scheduling Weaknesses

= |f processes frequently stop/start, assigning tickets
becomes difficult!

= Lottery scheduling works well on systems with long-

running Processes

= Great for server environments:
= Web server gets 70% of the CPU

= Database server gets 20%

= 10% goes to other background processes

= Workloads with highly variable thread counts suffer

CS 326: Operating Systems

35



Basic Scheduling: Wrapping Up

By now you may be wondering “what's the point of

these algorithms?”
They all do have glaring weaknesses

In general, they are not suitable for consumer
operating systems like Windows, macOS, Linux

However, they can be used for problem-specific OS

The tradeoffs here impact the more complicated
schedulers as well

CS 326: Operating Systems

36



Real-Time Operating Systems

RTOS operate in embedded applications and have
different scheduling constraints
Processes expect to be scheduled at certain intervals
and run for fixed amounts of time
For example, your car might need to update the LCD

speedometer display every 10 ms
This needs to be done constantly, and will probably
take the same amount of time to execute

Embedded systems, robots

CS 326: Operating Systems

37



Linux RT Scheduling

= Linux can be configured to provide real-time (ish)

scheduling
= SCHED_RR

= SCHED_FIFO

= The time quantum can also be configured:

= cat /proc/sys/kernel/sched_rr_ timeslice_ms10

CS 326: Operating Systems

38



Today's Sereatte Agenda?

Context Switches and Interrupts

Basic Scheduling Algorithms
Scheduling with I/0

Symmetric Multiprocessing

CS 326: Operating Systems

39



INput/Output

Thus far, we've ignored |/O
Reading/writing to disk, network, etc.

When a process performs /O, it blocks to wait for the

operation to complete

Q: Can a process still work on other things while
waiting for 1/0?

A Yes... by using other threads

If the scheduler does not account for this, CPU usage
drops (CPU is idle during I/0)

CS 326: Operating Systems

40



/O: A Executes, then

A B B B BB

80
Time

CS 326: Operating Systems

100 120 140

47



Preempt During 1/O

When a process begins an I/O operation, the scheduler
will preempt it

This allows another process to use the CPU during the

/0O
Boosts overall CPU usage

An interrupt informs the OS when the I/O operation
completes, allowing the first task to run again

1/0 Interleaving

CS 326: Operating Systems 42



/O Interleaving

CS 326: Operating Systems

100 120 140

43



Today's Sereatte Agenda?

Context Switches and Interrupts

Basic Scheduling Algorithms
Scheduling with I/0O

Symmetric Multiprocessing

CS 326: Operating Systems

44



Multiprocessing

The days of having just a single CPU are over
Even our phones have multiple cores!

All of our discussion thus far assumes that there is only
one CPU

In symmetric multiprocessing (SMP), each processor

has access to the same memory and devices
This is the common configuration

CS 326: Operating Systems 45



Queuing

In an SMP configuration, each processor gets its own

Process run queue
Contains processes ready for execution

Sharing a single queue would require locking and
coordination

The OS assigns new processes to the queues based on
processor load

CS 326: Operating Systems

46



Processor Affinity

CPUs generally contain cache memory that operates
much faster than system memory (RAM)

As processes are switched in and out, the cache may

already contain some program state
To take advantage of this, the OS tries to keep
processes running on the same CPU/core

Processor Affinity
Hard affinity — always scheduled to the same CPU

Soft affinity — best effort to schedule to the same CPU

CS 326: Operating Systems

47



Migration

Processor affinity boosts performance by reducing
context switch overhead

However, processor affinity can lead to imbalances in
load

Push migration: OS finds too many processes in one
run queue, moves them to balance it out

Pull migration: OS finds an empty run queue, so it
moves a process from a full queue

CS 326: Operating Systems 48



Kernel Ticks

If the system gets interrupted every X ms, does this

impact multiple processors/cores?
Yes!

Most modern OS kernels are now tickless
Interrupts are set up and fired on demand rather than

periodically
(e.g., process A has scheduling gquantum of 18ms,
so set the interrupt to fire in 18ms)

Also known as dynamic ticks

ldle CPUs can stay idle, reducing power consumption

CS 326: Operating Systems 49



References

Scheduling figures from this lecture:
Operating Systems: Three Easy Pieces
http://pages.cswisc.edu/~remzi/OSTEP/

CS 326: Operating Systems

50


http://pages.cs.wisc.edu/~remzi/OSTEP/

