
CPU Scheduling

CS 326: Operating Systems

Lecture 10

▪ Context Switches and Interrupts

▪ Basic Scheduling Algorithms

▪ Scheduling with I/O

▪ Symmetric Multiprocessing

Today’s Schedule Agenda?

CS 326: Operating Systems 2

▪ Context Switches and Interrupts

▪ Basic Scheduling Algorithms

▪ Scheduling with I/O

▪ Symmetric Multiprocessing

Today’s Schedule Agenda?

CS 326: Operating Systems 3

▪ Changing execution from process to process requires

context switching

▪ Saving and restoring the process control block

▪ You may wonder if transitioning between user and

kernel space requires a context switch

▪ In general, no

▪ Only a privilege change occurs

▪ Ring 3 > Ring 0; or: User Mode > Superuser Mode

Context Switching

CS 326: Operating Systems 4

▪ Executable machine code

▪ Memory (isolated from other processes)

▪ Call stack

▪ Heap

▪ Metadata

▪ Permissions, ownership

▪ Open files and access isolation

▪ Environment variables

▪ Context

▪ Registers

▪ Stack pointer, program counter

▪ Memory addressing

Reminder: Process Control Block

CS 326: Operating Systems 5

▪ How do we know when to context switch? Programs

don’t have to do it…

▪ Accomplished via interrupts

▪ The OS configures a hardware timer to fire on a set

interval:

▪ “Interrupt CPU in X ms”

When to Switch

CS 326: Operating Systems 6

▪ The CPU receives a hardware event every X ms

▪ Trap table is used to determine what to do (what code

to run) when the hardware timer fires

▪ This moves us back into kernel space

▪ Then we can save the current PCB and replace it with

the next in the run queue

▪ This is called preemptive multitasking

▪ Processes do not have to explicitly yield control to

others!

Interrupt Handling

CS 326: Operating Systems 7

▪ Vintage OS often used a very basic form of scheduling:

▪ Running tasks sequentially (mainframes! punchcards!)

▪ Cooperative multitasking

▪ We can implement our very own user space “thread

library” by context switching within our own programs

▪ Done by runtimes such as Go

Basic Scheduling

CS 326: Operating Systems 8

▪ How do we decide what to run next?

▪ Several scheduling algorithms exist, all with different

run time properties

▪ Maybe you want your algorithm to be fair to all

processes?

▪ …or certain processes may get higher priority than

others

Making Decisions

CS 326: Operating Systems 9

▪ Context Switches and Interrupts

▪ Basic Scheduling Algorithms

▪ Scheduling with I/O

▪ Symmetric Multiprocessing

Today’s Schedule Agenda?

CS 326: Operating Systems 10

▪ How long each process runs for

▪ Scheduling quantum

▪ When jobs start or stop

▪ At boot: lots of processes starting at once

▪ During run time: less frequent start/stop

▪ Whether the process performs I/O

▪ Process priorities

▪ Kernel threads, multimedia, games, etc.

Scheduling Concerns

CS 326: Operating Systems 11

▪ CPU Utilization

▪ Throughput

▪ Turnaround time

▪ Response time

Scheduling Metrics

CS 326: Operating Systems 12

▪ CPU Utilization

▪ Amount of time the CPU spends doing productive

work

▪ A bad scheduler won’t keep the CPU pipeline full of

tasks

▪ Utilization:

▪

▪

▪

Scheduling Metrics

Throughput

Turnaround Time

Response Time

CS 326: Operating Systems 13

▪

▪ Throughput

▪ Number of processes that are completed per time

unit: ()

▪ For instance: 54 processes per second

▪

▪

Scheduling Metrics

CPU Utilization

Turnaround Time

Response Time

CS 326: Operating Systems 14

▪

▪

▪ Turnaround Time

▪ Amount of time from process arrival to process

completion

▪

▪

Scheduling Metrics

CPU Utilization

Throughput

Response Time

CS 326: Operating Systems 15

▪

▪

▪

▪ Response Time

▪ How quickly a process starts running after it arrives

(submitted/launched)

▪

Scheduling Metrics

CPU Utilization

Throughput

Turnaround Time

CS 326: Operating Systems 16

Demo: a “scheduler”

CS 326: Operating Systems 17

▪ FIFO

▪ SJF

▪ STCF

▪ Round Robin

▪ Priority

▪ Lottery

Basic Scheduling Algorithms

CS 326: Operating Systems 18

▪ The first in, first out (FIFO) scheduler works just like a

queue data structure

▪ Processes are executed in the order they arrive:

▪ If A arrives, followed by B:

1. A executes completely

2. B executes completely

▪ Works reasonably well IF the processes run for about

the same amount of time

FIFO

CS 326: Operating Systems 19

FIFO: Uniform Run Times

CS 326: Operating Systems 20

▪ If one task takes a very long time, the other (shorter)

tasks will have to wait, and wait, and wait…

▪ This is called the convoy effect

▪ Here, the average process completion time is low

▪ A process may only need 2 seconds to run, but waits

for 20 seconds before it can even start

FIFO Weaknesses

CS 326: Operating Systems 21

Convoy Effect

CS 326: Operating Systems 22

▪ With shortest job first (SJF) scheduling, we don’t have to

worry about long tasks causing a convoy

▪ Assuming all the jobs are scheduled at the same time,

the smallest will be executed first

▪ Little jobs get finished quickly

▪ Long jobs are delayed, but the impact is not as

noticeable

SJF

CS 326: Operating Systems 23

SJF: Prioritize Small Tasks

CS 326: Operating Systems 24

▪ First of all, how can we really know how long a job will

take ahead of time?

▪ This research question is still relevant today

▪ If your OS routinely runs lots of small tasks and one

large task all at the same time, the larger task will always

have to wait

▪ Once the large task is running, we’ll still have a convoy

effect if we schedule new, smaller tasks

SJF Weaknesses

CS 326: Operating Systems 25

SJF: Late Arrivals

CS 326: Operating Systems 26

▪ In the shortest time to completion first (STCF) algorithm,

we introduce preemption

▪ Run whichever task will complete first and preempt

running processes that don’t meet the criteria

▪ In other words, this is SJF with preemption!

▪ Now the large task causing the convoy effect can be

swapped out when small jobs arrive

▪ This keeps average turnaround time high: most small

tasks will be taken care of quickly

STCF

CS 326: Operating Systems 27

STCF: Preemption

CS 326: Operating Systems 28

▪ STCF de-prioritizes large tasks the most

▪ Poor large tasks!

▪ We also have a problem with resource starvation

▪ If the OS continuously receives small tasks, the large

task may never get a turn to execute

STCF Weaknesses

CS 326: Operating Systems 29

▪ Round robin scheduling tries to be as fair as possible

▪ Using preemption, all processes get a scheduling

quantum (time slice)

▪ If I have 10 processes and a quantum of 1ms, then I’ll

run each process for 1ms for each iteration of the

algorithm

▪ After one pass completes, start back over again

Round Robin

CS 326: Operating Systems 30

Round Robin: Response Time

CS 326: Operating Systems 31

▪ While RR is fair, the scheduling quantum has a big

impact on performance

▪ Too small? Not much actual work getting done, most

effort expended on context switching

▪ Too large? Programs aren’t responsive

▪ Exhibits poor turnaround time

▪ As the number of processes grows, response time can

also begin to take a hit

Round Robin Weaknesses

CS 326: Operating Systems 32

▪ Priority based scheduling allows some tasks to be

considered more “important” than others

▪ In this scheme, a number is assigned to the process to

designate its priority

▪ The scheduler sorts tasks by their priorities and

executes them in that order

▪ Unix systems: process nice level

Priority Scheduling

CS 326: Operating Systems 33

▪ With lottery scheduling, each process is allocated

lottery tickets

▪ The scheduler picks a number at random, and the

winning ticket gets the CPU

▪ The more tickets a process has, the higher the chance it

will be scheduled

▪ This lets us allocate tickets to assign CPU priorities

▪ Want to give a process 30% of the CPU? Give it 30%

of the overall number of tickets

Lottery Scheduling

CS 326: Operating Systems 34

▪ If processes frequently stop/start, assigning tickets

becomes difficult!

▪ Lottery scheduling works well on systems with long-

running processes

▪ Great for server environments:

▪ Web server gets 70% of the CPU

▪ Database server gets 20%

▪ 10% goes to other background processes

▪ Workloads with highly variable thread counts suffer

Lottery Scheduling Weaknesses

CS 326: Operating Systems 35

▪ By now you may be wondering “what’s the point of

these algorithms?”

▪ They all do have glaring weaknesses

▪ In general, they are not suitable for consumer

operating systems like Windows, macOS, Linux

▪ However, they can be used for problem-specific OS

▪ The tradeoffs here impact the more complicated

schedulers as well

Basic Scheduling: Wrapping Up

CS 326: Operating Systems 36

▪ RTOS operate in embedded applications and have

different scheduling constraints

▪ Processes expect to be scheduled at certain intervals

and run for fixed amounts of time

▪ For example, your car might need to update the LCD

speedometer display every 10 ms

▪ This needs to be done constantly, and will probably

take the same amount of time to execute

▪ Embedded systems, robots

Real-Time Operating Systems

CS 326: Operating Systems 37

▪ Linux can be configured to provide real-time (ish)

scheduling

▪ SCHED_RR

▪ SCHED_FIFO

▪ The time quantum can also be configured:

▪ cat /proc/sys/kernel/sched_rr_timeslice_ms10

Linux RT Scheduling

CS 326: Operating Systems 38

▪ Context Switches and Interrupts

▪ Basic Scheduling Algorithms

▪ Scheduling with I/O

▪ Symmetric Multiprocessing

Today’s Schedule Agenda?

CS 326: Operating Systems 39

▪ Thus far, we’ve ignored I/O

▪ Reading/writing to disk, network, etc.

▪ When a process performs I/O, it blocks to wait for the

operation to complete

▪ Q: Can a process still work on other things while

waiting for I/O?

▪ A: Yes… by using other threads

▪ If the scheduler does not account for this, CPU usage

drops (CPU is idle during I/O)

Input/Output

CS 326: Operating Systems 40

I/O: A Executes, then B

CS 326: Operating Systems 41

▪ When a process begins an I/O operation, the scheduler

will preempt it

▪ This allows another process to use the CPU during the

I/O

▪ Boosts overall CPU usage

▪ An interrupt informs the OS when the I/O operation

completes, allowing the first task to run again

▪ I/O Interleaving

Preempt During I/O

CS 326: Operating Systems 42

I/O Interleaving

CS 326: Operating Systems 43

▪ Context Switches and Interrupts

▪ Basic Scheduling Algorithms

▪ Scheduling with I/O

▪ Symmetric Multiprocessing

Today’s Schedule Agenda?

CS 326: Operating Systems 44

▪ The days of having just a single CPU are over

▪ Even our phones have multiple cores!

▪ All of our discussion thus far assumes that there is only

one CPU

▪ In symmetric multiprocessing (SMP), each processor

has access to the same memory and devices

▪ This is the common configuration

Multiprocessing

CS 326: Operating Systems 45

▪ In an SMP configuration, each processor gets its own

process run queue

▪ Contains processes ready for execution

▪ Sharing a single queue would require locking and

coordination

▪ The OS assigns new processes to the queues based on

processor load

Queuing

CS 326: Operating Systems 46

▪ CPUs generally contain cache memory that operates

much faster than system memory (RAM)

▪ As processes are switched in and out, the cache may

already contain some program state

▪ To take advantage of this, the OS tries to keep

processes running on the same CPU/core

▪ Processor Affinity

▪ Hard affinity – always scheduled to the same CPU

▪ Soft affinity – best effort to schedule to the same CPU

Processor Affinity

CS 326: Operating Systems 47

▪ Processor affinity boosts performance by reducing

context switch overhead

▪ However, processor affinity can lead to imbalances in

load

▪ Push migration: OS finds too many processes in one

run queue, moves them to balance it out

▪ Pull migration: OS finds an empty run queue, so it

moves a process from a full queue

Migration

CS 326: Operating Systems 48

▪ If the system gets interrupted every X ms, does this

impact multiple processors/cores?

▪ Yes!

▪ Most modern OS kernels are now tickless

▪ Interrupts are set up and fired on demand rather than

periodically

▪ (e.g., process A has scheduling quantum of 18ms,

so set the interrupt to fire in 18ms)

▪ Also known as dynamic ticks

▪ Idle CPUs can stay idle, reducing power consumption

Kernel Ticks

CS 326: Operating Systems 49

Scheduling figures from this lecture:

Operating Systems: Three Easy Pieces

http://pages.cs.wisc.edu/~remzi/OSTEP/

References

CS 326: Operating Systems 50

http://pages.cs.wisc.edu/~remzi/OSTEP/

