CS 326: Operating Systems
Multi-Level Feedback Queues

Lecture 11



Today's Schedule

Building an Ideal Scheduler

Priority-Based Scheduling
= Multi-Level Queues

Multi-Level Feedback Queues

Scheduling Domains

Completely Fair Scheduling

CS 326: Operating Systems



Today's Schedule

Building an Ideal Scheduler

Priority-Based Scheduling
Multi-Level Queues

Multi-Level Feedback Queues
Scheduling Domains

Completely Fair Scheduling

CS 326: Operating Systems



CPU Scheduling

We've discussed several CPU scheduling algorithms

Each algorithm has its own set of strengths and

weaknesses

Like anything in computer science, scheduling is all
about managing trade-offs

By designing our scheduler carefully, we can provide
good performance for a variety of workloads

CS 326: Operating Systems



The |ldeal Scheduler

= |na perfect world, we'd have a scheduler with:
= Quick turnaround times

= Quick response times

= Free beer

= Turnaround: amount of time from process arrival to
process completion

= Response: how quickly a process starts running after it
arrives

CS 326: Operating Systems



Multi-Level Feedback Queue

The MLFQ (and variants thereof) is one of the most

commonly-used scheduling algorithms

macOS, Windows, Solaris, FreeBSD
*With modifications

Linux: 1991 — 2001

Builds on the idea of priority scheduling: different
tasks will run with different priorities

CS 326: Operating Systems



Today's Schedule

Building an Ideal Scheduler

Priority-Based Scheduling
Multi-Level Queues

Multi-Level Feedback Queues
Scheduling Domains

Completely Fair Scheduling

CS 326: Operating Systems



Priority Scheduling

Why use priority scheduling as a base for more
complicated algorithms?

Not all tasks have the same resource requirements:
Your browser: needs CPU frequently

Time Sync Daemon: needs CPU rarely

By prioritizing tasks effectively into multiple queues, we

can make sure they get the resources they need
Everybody’s happy!

CS 326: Operating Systems



Multi-Level Queue

Running

High Priority

System — >

Interactive —»

Batch —

v

Low Priority

CS 326: Operating Systems



MLQ: Algorithms

Many implementations of this multi-queue approach
use different scheduling algorithms per queue

System priority? Use FIFO
Must be empty before moving to the interactive
queue

Interactive? Use shortest job first (SJF)

Batch queue? Use round robin (RR)

CS 326: Operating Systems

10



Dynamic Priority

The only issue with assigning priorities in a fixed manner

IS that priorities often change
Plus, if we ask applications what priority to run at
they'll all want to be #1

Maybe you minimize your web browser... Should it still
be a high priority?

Bursty workloads: perhaps a task sits idle 70% of the
time but needs lots of resources 30% of the time

We need to allow priorities to change dynamically

CS 326: Operating Systems

11



Implementing Dynamic Priorities

= Rather than asking programs for their priority, we'll
assign them automatically instead

= Let's have a thought experiment: How can we assign
priorities fairly and efficiently?

CS 326: Operating Systems 12



Implementing Dynamic Priorities

= Start the process in a queue based on its resource

requirements and move it based on usage patterns
= Reactive scheduling

= Processes that use more CPU will be moved to lower

priorities over time
= Process aging

= Stop using so much CPU? Priority will gradually be
boosted

CS 326: Operating Systems 13



Reactive Algorithms

A reactive algorithm doesn't really sound that great
It just takes what it has seen in the past into account!

A far cry from “intelligence”

However, many patterns in computer science (and in
the real world!) repeat themselves

You can... adequately... predict the future by looking at
the past

CS 326: Operating Systems 14



Today's Schedule

Building an Ideal Scheduler

Priority-Based Scheduling
Multi-Level Queues

Multi-Level Feedback Queues
Scheduling Domains

Completely Fair Scheduling

CS 326: Operating Systems

15



Multi-Level Feedback Queue

= MLFQ is designed to be a good scheduler for systems

that have a variety of process types
= Multimode systems

= Goals of the algorithm:
1. Favor short jobs

2. Favor I/O bound jobs

3. Split processes into queues based on usage needs

CS 326: Operating Systems

16



Algorithm [1/2]

Processes enter at the highest priority queue

When their turn comes, the process runs and does one of the
following:
Finishes execution

Relinquishes control of the CPU
Gets preempted by the OS

When (2) happens, the process returns to the end of its current
queue

When (3) happens, the process is moved to the next lower
priority queue

CS 326: Operating Systems

17



Algorithm [2/2]

Once the process reaches the last queue,

or base level queue, it stays there
Usually scheduled w/ Round Robin algorithm

Long-running background tasks can happily stay in the
base level queue

If the process blocks for I/O, then it will be promoted to

one queue higher
Allows processes to “escape” to a higher priority

CS 326: Operating Systems 18



MLFQ

High Priority,
Short Quantum
I >
l
I
|
| —>>
|
|
I >
V g ]
Low Priority,
Long Quantum

CS 326: Operating Systems

*If a process does not use its entire quantum, it remains in its current queue.

19



Adding Priorities

We have different priorities based on queues, but we
can also assign processes a priority level

Called nice level on Unix systems
Using these priorities, we can iterate over the queue

and:
Run processes with a higher priority first

If all priorities are the same, we fall back to round robin

CS 326: Operating Systems

20



nice

Nice levels range from -20 (highest priority) to

19 (lowest priority)
Why? Arbitrary

Why does positive = low priority?
Essentially "adding” CPU usage to a process

The default nice level is O

As a regular user, you can only decrease your process
priority

CS 326: Operating Systems

21



nice your jobs

|_et's be nice to the other users on our machine:
nice -n 19 COMMAND

renice +19 PID

Easy way to see the effects: run stress and have
different nice levels for each child process

Doesn't seem that important these days. In the past,
multi-user systems were much more common

Still somewhat true today: we can ssh into any of the
machines in the department and use them remotely

CS 326: Operating Systems 22



Tweaking Priorities

The nice command can also be useful in tweaking your
system to get better performance

Perhaps you have a web server running to host your
band's latest song...

...but don't want lots of web users downloading it to
iInterrupt your minecraft session

nice the web server process (apache, nginx, etc)

CS 326: Operating Systems 23



MLFQ CPU Usage Profiles

= Let's look at some process usage profiles under MLFQ

= \We have different job types:
= Long running

= Short
= |/O-bound

CS 326: Operating Systems



A Long-Running Job

Q2

Q1

QO

0 50 100 150 200

CS 326: Operating Systems

25



L ong-Running + Interactive Job

(Approximates OSzJ F)

0 50 100 150 200

CS 326: Operating Systems

26



Heavy |/O

CS 326: Operating Systems

100

150

200

27



Starvation

One major weakness of MLFQ is starvation

If there are too many processes in general, long-running
processes may never get to run

This can happen from a busy interactive system

Or, you can simulate this situation with a fork bomb
Don't run this in your terminal.
PO ] &
Cripples machine by starting processes that start
more processes, and so on... how to do in C?

CS 326: Operating Systems 28



Starvation

0 50 100 150 200

CS 326: Operating Systems

29



Avoiding Starvation

To deal with starving processes, the scheduler
implements a periodic priority boost

Every so often, the priority of all running processes is
iIncreased

This prevents starving processes and also helps cope

with processes that have varying usage patterns
If a background process has become more
interactive, it gets a chance to run in the interactive
queue

CS 326: Operating Systems 30



Before and After

5300sting

CS 326: Operating Systems

150

200

D 1%
O O
o o
m a8}
150 200

31



Tricking MLFQ

You can also “game” MLFQ by stopping your process

just before its time quantum is up
Great, you get to stay in your current queue!

To deal with this, we can record the total amount of time

the CPU spends in each queue
Spending too much time (configurable threshold)
causes your process to be moved to the next queue

CS 326: Operating Systems 32



Dealing with Trickery

C RN e

100 150 200 250 300 10 150 200 250 300

CS 326: Operating Systems

33



Process Accounting

To help cope with these edge cases, the scheduler
records total CPU time across all queues

The more time spent on the CPU, the lower the queue
your process will be placed in

However, the lower the priority queue, the longer the
scheduling quantum

CS 326: Operating Systems

34



CPU Time Accounting

CS 326: Operating Systems

35



MLFQ Goals

MLFQ is tasked with improving both response time and
turnaround time

Response time: processes will always be considered

‘'short running” when submitted
They start running quickly

Turnaround: we avoid starvation and periodically boost
priorities to cope with changing usage patterns

We can have our cake and eat it too! (kinda...)

CS 326: Operating Systems 36



Today's Schedule

Building an Ideal Scheduler

Priority-Based Scheduling
= Multi-Level Queues

Multi-Level Feedback Queues

Scheduling Domains

Completely Fair Scheduling

CS 326: Operating Systems

37



Scheduling Domains [1/2]

= Unfortunately, we can't always assume there is just one
CPU

= These days, we have to cope with:
= Cache levels

Hyperthreading

Multi-core

Multi-processor
NUMA Architectures

CS 326: Operating Systems 38



Scheduling Domains [2/2]

To deal with this, Linux supports scheduling domains

Scheduling domains allow the various “execution units”

(CPUs, hardware threads, cores, etc) to be placed in a
hierarchy

Some are less desirable than others: I'd prefer a real
core over a hyperthread

Natural hierarchy: one core, two logical threads

CS 326: Operating Systems

39



Migration

Process migration takes these scheduling domains into
account

Example: cores on a single CPU may have separate L1

cache and unified (shared) L2 cache
Favor: pinning to a single core

Next best: scheduling on a different core, same CPU

Worst: migrating to a different CPU

CS 326: Operating Systems

40



Today's Schedule

Building an Ideal Scheduler

Priority-Based Scheduling
Multi-Level Queues

Multi-Level Feedback Queues
Scheduling Domains

Completely Fair Scheduling

CS 326: Operating Systems

41



Completely Fair Scheduling

As | mentioned, the Linux kernel does not use MLFQ

Instead, completely fair scheduling (CFS) attempts to,
well... be completely fair.

In an ideal world, we could actually assign part of the
CPU power to processes:

A gets 50%, B gets 25%, and C gets 25%, and they all
run at the exact same time

Awesome! Not physically possible though

CS 326: Operating Systems 42



CFS

Executes processes in a round robin fashion but
without a fixed interrupt/time quantum

Each process gets a time slice
Tms or more

Chosen based on a maximum execution time (how
long the process would run on an “ideal” processor)

CPU usage is tracked per process

Processes are inserted into a red-black tree and sorted
by usage

CS 326: Operating Systems

43



CES: Dividing up Time

| et's assume a maximum execution time of 10ms

We run 5 processes
Each process gets 10/ 5 =2 ms of CPU time

To deal with nice values, we weight the processes
Pretend that they've already run for some time when
they really haven't

And that, my friends, is how scheduling works on
modern OS

CS 326: Operating Systems

44



References

Great scheduling resource:
https://www.cs.rutgers.edu/~pxk/416/notes/07-
scheduling.ntm|

CES:

https://enwikipedia.org/wiki/Completely Fair_Scheduler
Scheduling figures from this lecture:Operating Systems:
Three Easy Pieces
http://pages.cswisc.edu/~remzi/OSTEP/

CS 326: Operating Systems

45


https://www.cs.rutgers.edu/~pxk/416/notes/07-scheduling.html
https://www.cs.rutgers.edu/~pxk/416/notes/07-scheduling.html
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://pages.cs.wisc.edu/~remzi/OSTEP/

