
Multi-Level Feedback Queues

CS 326: Operating Systems

Lecture 11

▪ Building an Ideal Scheduler

▪ Priority-Based Scheduling

▪ Multi-Level Queues

▪ Multi-Level Feedback Queues

▪ Scheduling Domains

▪ Completely Fair Scheduling

Today’s Schedule

CS 326: Operating Systems 2

▪ Building an Ideal Scheduler

▪ Priority-Based Scheduling

▪ Multi-Level Queues

▪ Multi-Level Feedback Queues

▪ Scheduling Domains

▪ Completely Fair Scheduling

Today’s Schedule

CS 326: Operating Systems 3

▪ We’ve discussed several CPU scheduling algorithms

▪ Each algorithm has its own set of strengths and

weaknesses

▪ Like anything in computer science, scheduling is all

about managing trade-offs

▪ By designing our scheduler carefully, we can provide

good performance for a variety of workloads

CPU Scheduling

CS 326: Operating Systems 4

▪ In a perfect world, we’d have a scheduler with:

▪ Quick turnaround times

▪ Quick response times

▪ Free beer

▪ Turnaround: amount of time from process arrival to

process completion

▪ Response: how quickly a process starts running after it

arrives

The Ideal Scheduler

CS 326: Operating Systems 5

▪ The MLFQ (and variants thereof) is one of the most

commonly-used scheduling algorithms

▪ macOS, Windows, Solaris, FreeBSD

▪ *With modifications

▪ Linux: 1991 – 2001

▪ Builds on the idea of priority scheduling: different

tasks will run with different priorities

Multi-Level Feedback Queue

CS 326: Operating Systems 6

▪ Building an Ideal Scheduler

▪ Priority-Based Scheduling

▪ Multi-Level Queues

▪ Multi-Level Feedback Queues

▪ Scheduling Domains

▪ Completely Fair Scheduling

Today’s Schedule

CS 326: Operating Systems 7

▪ Why use priority scheduling as a base for more

complicated algorithms?

▪ Not all tasks have the same resource requirements:

▪ Your browser: needs CPU frequently

▪ Time Sync Daemon: needs CPU rarely

▪ By prioritizing tasks effectively into multiple queues, we

can make sure they get the resources they need

▪ Everybody’s happy!

Priority Scheduling

CS 326: Operating Systems 8

Multi-Level Queue

CS 326: Operating Systems 9

▪ Many implementations of this multi-queue approach

use different scheduling algorithms per queue

▪ System priority? Use FIFO

▪ Must be empty before moving to the interactive

queue

▪ Interactive? Use shortest job first (SJF)

▪ Batch queue? Use round robin (RR)

MLQ: Algorithms

CS 326: Operating Systems 10

▪ The only issue with assigning priorities in a fixed manner

is that priorities often change

▪ Plus, if we ask applications what priority to run at

they’ll all want to be #1

▪ Maybe you minimize your web browser… Should it still

be a high priority?

▪ Bursty workloads: perhaps a task sits idle 70% of the

time but needs lots of resources 30% of the time

▪ We need to allow priorities to change dynamically

Dynamic Priority

CS 326: Operating Systems 11

▪ Rather than asking programs for their priority, we’ll

assign them automatically instead

▪ Let’s have a thought experiment: How can we assign

priorities fairly and efficiently?

▪ …

Implementing Dynamic Priorities

CS 326: Operating Systems 12

▪ Start the process in a queue based on its resource

requirements and move it based on usage patterns

▪ Reactive scheduling

▪ Processes that use more CPU will be moved to lower

priorities over time

▪ Process aging

▪ Stop using so much CPU? Priority will gradually be

boosted

Implementing Dynamic Priorities

CS 326: Operating Systems 13

▪ A reactive algorithm doesn’t really sound that great

▪ It just takes what it has seen in the past into account!

▪ A far cry from “intelligence”

▪ However, many patterns in computer science (and in

the real world!) repeat themselves

▪ You can… adequately… predict the future by looking at

the past

Reactive Algorithms

CS 326: Operating Systems 14

▪ Building an Ideal Scheduler

▪ Priority-Based Scheduling

▪ Multi-Level Queues

▪ Multi-Level Feedback Queues

▪ Scheduling Domains

▪ Completely Fair Scheduling

Today’s Schedule

CS 326: Operating Systems 15

▪ MLFQ is designed to be a good scheduler for systems

that have a variety of process types

▪ Multimode systems

▪ Goals of the algorithm:

1. Favor short jobs

2. Favor I/O bound jobs

3. Split processes into queues based on usage needs

Multi-Level Feedback Queue

CS 326: Operating Systems 16

▪ Processes enter at the highest priority queue

▪ When their turn comes, the process runs and does one of the

following:

1. Finishes execution

2. Relinquishes control of the CPU

3. Gets preempted by the OS

▪ When (2) happens, the process returns to the end of its current

queue

▪ When (3) happens, the process is moved to the next lower

priority queue

Algorithm [1/2]

CS 326: Operating Systems 17

▪ Once the process reaches the last queue,

or base level queue, it stays there

▪ Usually scheduled w/ Round Robin algorithm

▪ Long-running background tasks can happily stay in the

base level queue

▪ If the process blocks for I/O, then it will be promoted to

one queue higher

▪ Allows processes to “escape” to a higher priority

Algorithm [2/2]

CS 326: Operating Systems 18

MLFQ

CS 326: Operating Systems 19

▪ We have different priorities based on queues, but we

can also assign processes a priority level

▪ Called nice level on Unix systems

▪ Using these priorities, we can iterate over the queue

and:

▪ Run processes with a higher priority first

▪ If all priorities are the same, we fall back to round robin

Adding Priorities

CS 326: Operating Systems 20

▪ Nice levels range from -20 (highest priority) to

19 (lowest priority)

▪ Why? Arbitrary

▪ Why does positive = low priority?

▪ Essentially ”adding” CPU usage to a process

▪ The default nice level is 0

▪ As a regular user, you can only decrease your process

priority

nice

CS 326: Operating Systems 21

▪ Let’s be nice to the other users on our machine:

▪ nice -n 19 COMMAND

▪ renice +19 PID

▪ Easy way to see the effects: run stress and have

different nice levels for each child process

▪ Doesn’t seem that important these days. In the past,

multi-user systems were much more common

▪ Still somewhat true today: we can ssh into any of the

machines in the department and use them remotely

nice your jobs

CS 326: Operating Systems 22

▪ The nice command can also be useful in tweaking your

system to get better performance

▪ Perhaps you have a web server running to host your

band’s latest song…

▪ …but don’t want lots of web users downloading it to

interrupt your minecraft session

▪ nice the web server process (apache, nginx, etc)

Tweaking Priorities

CS 326: Operating Systems 23

▪ Let’s look at some process usage profiles under MLFQ

▪ We have different job types:

▪ Long running

▪ Short

▪ I/O-bound

MLFQ CPU Usage Profiles

CS 326: Operating Systems 24

A Long-Running Job

CS 326: Operating Systems 25

(Approximates SJF)

Long-Running + Interactive Job

CS 326: Operating Systems 26

Heavy I/O

CS 326: Operating Systems 27

▪ One major weakness of MLFQ is starvation

▪ If there are too many processes in general, long-running

processes may never get to run

▪ This can happen from a busy interactive system

▪ Or, you can simulate this situation with a fork bomb

▪ Don’t run this in your terminal:

▪ :(){ :|: & };:

▪ Cripples machine by starting processes that start

more processes, and so on… how to do in C?

Starvation

CS 326: Operating Systems 28

Starvation

CS 326: Operating Systems 29

▪ To deal with starving processes, the scheduler

implements a periodic priority boost

▪ Every so often, the priority of all running processes is

increased

▪ This prevents starving processes and also helps cope

with processes that have varying usage patterns

▪ If a background process has become more

interactive, it gets a chance to run in the interactive

queue

Avoiding Starvation

CS 326: Operating Systems 30

Before and After Boosting

CS 326: Operating Systems 31

▪ You can also “game” MLFQ by stopping your process

just before its time quantum is up

▪ Great, you get to stay in your current queue!

▪ To deal with this, we can record the total amount of time

the CPU spends in each queue

▪ Spending too much time (configurable threshold)

causes your process to be moved to the next queue

Tricking MLFQ

CS 326: Operating Systems 32

Dealing with Trickery

CS 326: Operating Systems 33

▪ To help cope with these edge cases, the scheduler

records total CPU time across all queues

▪ The more time spent on the CPU, the lower the queue

your process will be placed in

▪ However, the lower the priority queue, the longer the

scheduling quantum

Process Accounting

CS 326: Operating Systems 34

CPU Time Accounting

CS 326: Operating Systems 35

▪ MLFQ is tasked with improving both response time and

turnaround time

▪ Response time: processes will always be considered

“short running” when submitted

▪ They start running quickly

▪ Turnaround: we avoid starvation and periodically boost

priorities to cope with changing usage patterns

▪ We can have our cake and eat it too! (kinda…)

MLFQ Goals

CS 326: Operating Systems 36

▪ Building an Ideal Scheduler

▪ Priority-Based Scheduling

▪ Multi-Level Queues

▪ Multi-Level Feedback Queues

▪ Scheduling Domains

▪ Completely Fair Scheduling

Today’s Schedule

CS 326: Operating Systems 37

▪ Unfortunately, we can’t always assume there is just one

CPU

▪ These days, we have to cope with:

▪ Cache levels

▪ Hyperthreading

▪ Multi-core

▪ Multi-processor

▪ NUMA Architectures

Scheduling Domains [1/2]

CS 326: Operating Systems 38

▪ To deal with this, Linux supports scheduling domains

▪ Scheduling domains allow the various “execution units”

(CPUs, hardware threads, cores, etc) to be placed in a

hierarchy

▪ Some are less desirable than others: I’d prefer a real

core over a hyperthread

▪ Natural hierarchy: one core, two logical threads

Scheduling Domains [2/2]

CS 326: Operating Systems 39

▪ Process migration takes these scheduling domains into

account

▪ Example: cores on a single CPU may have separate L1

cache and unified (shared) L2 cache

▪ Favor: pinning to a single core

▪ Next best: scheduling on a different core, same CPU

▪ Worst: migrating to a different CPU

Migration

CS 326: Operating Systems 40

▪ Building an Ideal Scheduler

▪ Priority-Based Scheduling

▪ Multi-Level Queues

▪ Multi-Level Feedback Queues

▪ Scheduling Domains

▪ Completely Fair Scheduling

Today’s Schedule

CS 326: Operating Systems 41

▪ As I mentioned, the Linux kernel does not use MLFQ

▪ Instead, completely fair scheduling (CFS) attempts to,

well… be completely fair.

▪ In an ideal world, we could actually assign part of the

CPU power to processes:

▪ A gets 50%, B gets 25%, and C gets 25%, and they all

run at the exact same time

▪ Awesome! Not physically possible though

Completely Fair Scheduling

CS 326: Operating Systems 42

▪ Executes processes in a round robin fashion but

without a fixed interrupt/time quantum

▪ Each process gets a time slice

▪ 1ms or more

▪ Chosen based on a maximum execution time (how

long the process would run on an “ideal” processor)

▪ CPU usage is tracked per process

▪ Processes are inserted into a red-black tree and sorted

by usage

CFS

CS 326: Operating Systems 43

▪ Let’s assume a maximum execution time of 10ms

▪ We run 5 processes

▪ Each process gets 10 / 5 = 2 ms of CPU time

▪ To deal with nice values, we weight the processes

▪ Pretend that they’ve already run for some time when

they really haven’t

▪ And that, my friends, is how scheduling works on

modern OS

CFS: Dividing up Time

CS 326: Operating Systems 44

Great scheduling resource:

https://www.cs.rutgers.edu/~pxk/416/notes/07-

scheduling.html

CFS:

https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

Scheduling figures from this lecture:Operating Systems:

Three Easy Pieces

http://pages.cs.wisc.edu/~remzi/OSTEP/

References

CS 326: Operating Systems 45

https://www.cs.rutgers.edu/~pxk/416/notes/07-scheduling.html
https://www.cs.rutgers.edu/~pxk/416/notes/07-scheduling.html
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://pages.cs.wisc.edu/~remzi/OSTEP/

