CS 326: Operating Systems
Memory Management

Lecture 12

Today's Schedule

Mapped Memory

Memory Management

Virtual Memory

Memory Addresses

CS 326: Operating Systems

Today's Schedule

Mapped Memory

Memory Management

Virtual Memory

Memory Addresses

CS 326: Operating Systems

Mapped Memory

Remember there was one type of IPC we didn't really
cover: mapped memory

In multi-threaded applications, each thread shares
access to the heap

We can also share regions of memory between
processes!

Unlike with threads, we can restrict sharing to a
particular region of memory

CS 326: Operating Systems

mmap

Mapping a region of memory is accomplished with the
mmap function

mmap asks the OS kernel to reserve a portion of
memory and allow other process(es) to access it

It's also possible to memory map a file
In fact, mmap() takes in a file descriptor

More efficient than reading/writing buffered data
to/from disk manually

CS 326: Operating Systems

Working with Mapped Memory

= After the call to mmap completes, participating

processes are given a void pointer
= Just like with malloc

= This pointer provides the first offset of the shared
memaory region

= Processes can read/write directly as if they are working
with their own memory space

CS 326: Operating Systems

Use Cases

Mapped memory is extremely efficient

Once set up, processes do not have to go through the

kernel to communicate
Better performance

It's also more error-prone than other IPC mechanisms
If a cooperating program writes to memory incorrectly,
It's game over

CS 326: Operating Systems

Demo: mmap

CS 326: Operating Systems

Today's Schedule

Mapped Memory

Memory Management

Virtual Memory

Memory Addresses

CS 326: Operating Systems

Virtualizing Memory

So far, we've focused on how the OS runs and

schedules processes
Each process can pretend it owns the machine

However, this doesn't paint a complete picture...
What about memory?

How can we allow several processes to share system
memory without them knowing it?

CS 326: Operating Systems 10

Memory Layout

Look! There's that figure again!

We've discussed how
programs’' memory is
organized

What happens when we have
several programs running at
once?

CS 326: Operating Systems

Memory Allocation

Stack

l Growth

Static Data

Literals

Instructions

Read & Write

Read-Only

11

|solating Memory

How would you add support for memory isolation to an
operating system?

One approach: every time we swap out a process, let's
store its current memory state to disk

Great! Now we just add a bit more logic to our scheduler
and we're done!

CS 326: Operating Systems

12

Hrm...

What are some issues with this approach?

Programs can't share memory with each other because
everything is getting moved to disk

The disk is way too slow to handle this
We may context switch every 100ms... say our
program has 2 GB of memory in use and our disk can

write 300 MB/s
Yikes!

CS 326: Operating Systems

13

Virtual Memory

Since it's too inefficient to swap memory in and out from
disk constantly, we need another approach
We'll keep everything in memory!
Ok, great, except now processes can read each
others’ data!
We need to provide processes with their own address

Spaces
Virtual addresses that correspond to actual hardware

memory locations

CS 326: Operating Systems

14

Today's Schedule

Mapped Memory

Memory Management

Virtual Memory

Memory Addresses

CS 326: Operating Systems

15

Implementing Virtual Memory

Making this work isn't too difficult: we will require
programs to manage memory through the kernel

When a program starts up, we'll give it its very own

address space and map it to some location in memory
Process: "WWhoa cool, | got memory starting at
address O!'| must be the only process on this
machine!”

Kernel: "Poor naive process, you were actually
allocated memory locations 3240 — 3800."

CS 326: Operating Systems 16

The Benefit of Virtual Memory

Besides isolating processes, virtual memory also eases
the burden on our software

When you write a C program, you can just assume your
memory addresses start at some particular location
No need to worry about how things work at a
hardware level
Imagine if the C runtime had to worry about other

processes’ memory
It'd be way more complex!

CS 326: Operating Systems

17

Translating Addresses

When a process asks to read from memory location, for
example, ox20 ,the OS determines its hardware
address and performs the read operation

We now have control over the portions of memory a
process is allowed to read and write

However... what are the downsides of this approach?

CS 326: Operating Systems 18

Address Translation Performance

Doing all this work starts to sound somewhat like the

“full virtualization” execution strategy
Slow!

To boost performance, many CPUs include a memory
management unit (MMU)

Set up by the OS, this hardware feature enables fast
translation from logical addresses to physical
addresses

CS 326: Operating Systems 19

Address Types

= Logical address:
= Memory location seen by a process

= A virtual address

= Physical address:
= Actual location in system memory (RAM) where the
data resides

CS 326: Operating Systems

20

Translation

How does the mapping from logical to virtual work?

The simplest approach is to use base and bound

addresses
Or in plain English: the starting memory location and

the ending memory location

If a program asks for 0x20 , give it base + 0x20

CS 326: Operating Systems 21

Protection

When accessing memory, we also need to make sure
the request (req) is valid

if req < base:

// out of bounds!

if req > bound:

// out of bounds!

What type of error would you expect to receive when
you go out of bounds”?

CS 326: Operating Systems

22

Memory Migration

Using the base+bound pair, we can now move programs
around in memory dynamically

Simply copy the data to a new location, update the
base+bound

Want to increase the amount of virtual memory

allocated to a process?
Increase its bound!

CS 326: Operating Systems

23

Today's Schedule

Mapped Memory

Memory Management

Virtual Memory

Memory Addresses

CS 326: Operating Systems

24

Inspecting Memory Addresses

= We can print out the memory addresses of pointers
using the %p printf format specifier

= printf("Address of a = %p\n", &a);

= This allows us to determine the addresses of:
= Stack

Heap

Literals

Uninitialized data

Code (functions)

CS 326: Operating Systems

25

Demo: mem.c

CS 326: Operating Systems

26

Gaps

There is a giant gap between the stack and the heap... Is
this wasted space?

Interestingly, our nice diagram with memory stacked in

order starting from O does not seem to hold up
(Has Prof Malensek been lying to you this whole time?
Tune in next class to find out))

These gaps vary from system to system and have a

variety of usage scenarios
Modern Macs have an interesting memory layout...

CS 326: Operating Systems 27

Wrapping Up: Memory

We now can isolate processes memory and even move

memory around dynamically!
= Neato!

Unfortunately, memory is a bit more complex

Consider the scenario where you:
1. Start 3 processes

2. Terminate process 2

What happens to memory in this case?

CS 326: Operating Systems

28

Fragmentation

When there are gaps between processes, we have
memory fragmentation

We could move processes around to eliminate

fragmentation, but this is costly
Copies must be made, OS is has more work to do

Another thing: what happens when process 1 or 2 grow
too large and collide with a neighboring process?

CS 326: Operating Systems 29

Segmentation

Instead of mapping large, contiguous blocks of space to
processes, we will allocate segments of memory as

necessary
Memory Segmentation

Simple approach: put the stack in one place, heap in
another, data somewhere else...

Hmm, wonder what those “seg fault” things are?

CS 326: Operating Systems 30

Segmentation and Fragmentation

What Your Process Sees What Your OS Sees

Stack

l | |
Growth

Static Data

Literals

Instructions

“Sweet!” “Plz Stahp”

CS 326: Operating Systems

