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▪ Remember there was one type of IPC we didn’t really

cover: mapped memory

▪ In multi-threaded applications, each thread shares

access to the heap

▪ We can also share regions of memory between

processes!

▪ Unlike with threads, we can restrict sharing to a

particular region of memory

Mapped Memory
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▪ Mapping a region of memory is accomplished with the

mmap function

▪ mmap asks the OS kernel to reserve a portion of

memory and allow other process(es) to access it

▪ It’s also possible to memory map a file

▪ In fact, mmap() takes in a file descriptor

▪ More efficient than reading/writing buffered data

to/from disk manually

mmap
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▪ After the call to mmap completes, participating

processes are given a void pointer

▪ Just like with malloc

▪ This pointer provides the first offset of the shared

memory region

▪ Processes can read/write directly as if they are working

with their own memory space

Working with Mapped Memory
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▪ Mapped memory is extremely efficient

▪ Once set up, processes do not have to go through the

kernel to communicate

▪ Better performance

▪ It’s also more error-prone than other IPC mechanisms

▪ If a cooperating program writes to memory incorrectly,

it’s game over

Use Cases

CS 326: Operating Systems 7



Demo: mmap

CS 326: Operating Systems 8



▪ Mapped Memory

▪ Memory Management

▪ Virtual Memory

▪ Memory Addresses

Today’s Schedule

CS 326: Operating Systems 9



▪ So far, we’ve focused on how the OS runs and

schedules processes

▪ Each process can pretend it owns the machine

▪ However, this doesn’t paint a complete picture…

▪ What about memory?

▪ How can we allow several processes to share system

memory without them knowing it?

Virtualizing Memory
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▪ Look! There’s that figure again!

▪ We’ve discussed how

programs’ memory is

organized

▪ What happens when we have

several programs running at

once?

Memory Layout
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▪ How would you add support for memory isolation to an

operating system?

▪ …

▪ One approach: every time we swap out a process, let’s

store its current memory state to disk

▪ Great! Now we just add a bit more logic to our scheduler

and we’re done!

Isolating Memory
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▪ What are some issues with this approach?

▪ …

▪ Programs can’t share memory with each other because

everything is getting moved to disk

▪ The disk is way too slow to handle this

▪ We may context switch every 100ms… say our

program has 2 GB of memory in use and our disk can

write 300 MB/s

▪ Yikes!

Hrm…
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▪ Since it’s too inefficient to swap memory in and out from

disk constantly, we need another approach

▪ We’ll keep everything in memory!

▪ Ok, great, except now processes can read each

others’ data!

▪ We need to provide processes with their own address

spaces

▪ Virtual addresses that correspond to actual hardware

memory locations

Virtual Memory
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▪ Making this work isn’t too difficult: we will require

programs to manage memory through the kernel

▪ When a program starts up, we’ll give it its very own

address space and map it to some location in memory

▪ Process: “Whoa cool, I got memory starting at

address 0! I must be the only process on this

machine!”

▪ Kernel: “Poor naïve process, you were actually

allocated memory locations 3240 – 3800.”

Implementing Virtual Memory
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▪ Besides isolating processes, virtual memory also eases

the burden on our software

▪ When you write a C program, you can just assume your

memory addresses start at some particular location

▪ No need to worry about how things work at a

hardware level!

▪ Imagine if the C runtime had to worry about other

processes’ memory

▪ It’d be way more complex!

The Benefit of Virtual Memory
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▪ When a process asks to read from memory location, for

example, 0x20 , the OS determines its hardware

address and performs the read operation

▪ We now have control over the portions of memory a

process is allowed to read and write

▪ However… what are the downsides of this approach?

Translating Addresses
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▪ Doing all this work starts to sound somewhat like the

“full virtualization” execution strategy

▪ Slow!

▪ To boost performance, many CPUs include a memory

management unit (MMU)

▪ Set up by the OS, this hardware feature enables fast

translation from logical addresses to physical

addresses

Address Translation Performance
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▪ Logical address:

▪ Memory location seen by a process

▪ A virtual address

▪ Physical address:

▪ Actual location in system memory (RAM) where the

data resides

Address Types
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▪ How does the mapping from logical to virtual work?

▪ The simplest approach is to use base and bound

addresses

▪ Or in plain English: the starting memory location and

the ending memory location

▪ If a program asks for 0x20 , give it base + 0x20

Translation
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▪ When accessing memory, we also need to make sure

the request ( req ) is valid

▪ if req < base:

// out of bounds!

▪ if req > bound:

// out of bounds!

▪ What type of error would you expect to receive when

you go out of bounds?

Protection
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▪ Using the base+bound pair, we can now move programs

around in memory dynamically

▪ Simply copy the data to a new location, update the

base+bound

▪ Want to increase the amount of virtual memory

allocated to a process?

▪ Increase its bound!

Memory Migration
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▪ We can print out the memory addresses of pointers

using the %p printf format specifier

▪ printf("Address of a = %p\n", &a);

▪ This allows us to determine the addresses of:

▪ Stack

▪ Heap

▪ Literals

▪ Uninitialized data

▪ Code (functions)

Inspecting Memory Addresses
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Demo: mem.c
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▪ There is a giant gap between the stack and the heap… Is

this wasted space?

▪ Interestingly, our nice diagram with memory stacked in

order starting from 0 does not seem to hold up

▪ (Has Prof Malensek been lying to you this whole time?

Tune in next class to find out!)

▪ These gaps vary from system to system and have a

variety of usage scenarios

▪ Modern Macs have an interesting memory layout…

Gaps
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▪ We now can isolate processes’ memory and even move

memory around dynamically!

▪ Neato!

▪ Unfortunately, memory is a bit more complex

▪ Consider the scenario where you:

1. Start 3 processes

2. Terminate process 2

▪ What happens to memory in this case?

Wrapping Up: Memory
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▪ When there are gaps between processes, we have

memory fragmentation

▪ We could move processes around to eliminate

fragmentation, but this is costly

▪ Copies must be made, OS is has more work to do

▪ Another thing: what happens when process 1 or 2 grow

too large and collide with a neighboring process?

Fragmentation
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▪ Instead of mapping large, contiguous blocks of space to

processes, we will allocate segments of memory as

necessary

▪ Memory Segmentation

▪ Simple approach: put the stack in one place, heap in

another, data somewhere else…

▪ Hmm, wonder what those “seg fault” things are?

Segmentation

CS 326: Operating Systems 30



Segmentation and Fragmentation
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