
Segmentation

CS 326: Operating Systems

Lecture 13



▪ Memory Organization

▪ The MMU

▪ Dealing with Fragmentation

Today’s Schedule

CS 326: Operating Systems 2



▪ Memory Organization

▪ The MMU

▪ Dealing with Fragmentation

Today’s Schedule

CS 326: Operating Systems 3



Think back to our memory locations example:

Address of uninitialized data = 0x43405c
Address of initialized data   = 0x4238c4
Address of code               = 0x4236f0
Address of a (stack)          = 0x7ed9b2e4
Address of b (stack)          = 0x7ed9b2e8
Address of c (heap)           = 0x1f44150
Address of d (heap)           = 0x1f44160

Given this, what do we know about memory organization?

Thanks for the Memories

CS 326: Operating Systems 4



▪ The first thing we notice is that these locations may or

may not match our logical model of memory

▪ (See: stack, heap, code, etc. figure)

▪ They also vary depending on the machine we run our

code on

▪ macOS: stack seems to be growing ”up” (each

subsequent address is smaller than the last). Heap

grows “down”

▪ VM: both stack and heap seem to grow down?

Organization

CS 326: Operating Systems 5



▪ As you may suspect, the virtual memory allocated to

processes is totally removed from physical memory

▪ …Why?

▪ The first obvious reason: having a massive gap between

the stack and heap wastes memory

▪ How would we even figure out how much space to

allocate to each process?

▪ Too little: processes run out quickly

▪ Too much: small processes waste resources

Digging Deeper

CS 326: Operating Systems 6



▪ Before, we had a single base + bound pair per process

▪ Why not have a base + bound for each process

segment?

▪ Segment: one of those memory regions, like the stack

or the heap

▪ This means the MMU must support segmentation

Tweaking the Address Space

CS 326: Operating Systems 7



▪ With segmentation, each segment has its own base +

bound pair

▪ This allows for a sparse memory space

▪ No need to allocate big, contiguous blocks of

memory!

▪ We can even move segments around if they need to

be resized

▪ So now we finally know what a segfault really is: an illegal

access outside of the segment

Segmented Addresses

CS 326: Operating Systems 8



Segmentation and Fragmentation

CS 326: Operating Systems 9



▪ When an illegal access takes place, the MMU will

generate a hardware trap

▪ This executes some privileged code in kernel space

▪ Next, a SIGSEGV signal is sent to the offending process

▪ (Usually) the process is terminated!

Handling a Segfault

CS 326: Operating Systems 10



▪ Memory Organization

▪ The MMU

▪ Dealing with Fragmentation

Today’s Schedule

CS 326: Operating Systems 11



▪ Since we’re going to allow for multiple segments, we

need to update our concept of a hardware MMU

▪ Before, we tracked base + bound

▪ What do we need to track now?

Augmenting the MMU

CS 326: Operating Systems 12



▪ The type of segment

▪ The base address

▪ Segment size

▪ Plus:

▪ Whether or not the segment grows up or down

▪ Protection bits

Things to Keep Track Of

CS 326: Operating Systems 13



▪ Protection bits allow us to flag particular segments

based on what they are intended to be used for

▪ For example, the code segment should be read-only

▪ If it’s not, then a program could modify itself at

runtime… Essentially rewriting its code in memory

▪ Sounds crazy, but is quite common for rogue

software: if you can disable protection, you can

insert your own executable code in memory!

▪ Stack/heap: read+write

Protection Bits

CS 326: Operating Systems 14



▪ Segments also support an execute bit — whether or

not the location in memory can be executed by the CPU

▪ Code segment: execute

▪ Stack/heap: not executable!

▪ Otherwise, you could load CPU instructions into

memory, move there, and begin executing

▪ So? Well, imagine if a user visiting your website

figures out how to specially craft requests to

modify memory and add instructions…

Execute Bit

CS 326: Operating Systems 15



▪ Modern processors also support the NX Bit, which is

separate from segmentation

▪ This allows entire regions of memory to be marked as

non-executable

▪ Segmentation’s restrictions are very fine-grained in

comparison

NX Bit

CS 326: Operating Systems 16



▪ Now that our MMU is more complex, how does this

impact context switching?

▪ Well, mostly as we’d expect:

▪ We can’t just store a single base+bound, we also need

to store the different segment locations, sizes,

permissions, etc.

▪ Context switching takes more effort in general

Context Switching

CS 326: Operating Systems 17



▪ Memory Organization

▪ The MMU

▪ Dealing with Fragmentation

Today’s Schedule

CS 326: Operating Systems 18



▪ We briefly discussed fragmentation last class

▪ With segmentation, the likelihood that things are

fragmented increases

▪ Why?

▪ Lots more ”chunks” – segments of memory to deal with!

Fragmentation

CS 326: Operating Systems 19



▪ We can move segments around, and as long as we

update the physical addresses the process won’t know

the difference

▪ Unfortunately, moving memory requires copies to be

made, and copies are bad

▪ Slow

▪ Requires enough free space to do the transfer

Handling Fragmentation

CS 326: Operating Systems 20



▪ Let’s keep track of where segments are located in

memory

▪ When we allocate a new segment, we’ll find a suitable

region of free space and put it there

▪ Need to know where all the segments are located

▪ We can then develop free space management (FSM)

algorithms

Another Approach

CS 326: Operating Systems 21



▪ Let’s come up with some ways to manage freed blocks

of memory.

▪ …

Thought Experiment: FSM

CS 326: Operating Systems 22



▪ First fit – find the first free space available and put the

segment there

▪ Best fit – find free space that closely matches the size of

the segment

▪ Optimal: exactly the same size

▪ Worst fit – find the largest empty region of memory and

use that

FSM Algorithms

CS 326: Operating Systems 23



▪ Iterate and locate free memory regions

▪ If the region has enough room for the new segment,

then place it there

▪ If not, continue

▪ Good: simple, fast

▪ Bad: might need to unnecessarily split up large regions

of memory

First Fit

CS 326: Operating Systems 24



▪ Iterate and locate free memory regions

▪ If the region is a perfect fit, use it immediately

▪ Otherwise, continue until either:

▪ A perfect fit is found

▪ The closest fit is found

▪ Good: will optimally reuse existing portions of memory

▪ Bad: must iterate through all memory, and a non-perfect

fit might create very small fragments

Best Fit

CS 326: Operating Systems 25



▪ Why would you use a worst fit algorithm?

▪ Iterate and locate free memory regions

▪ Use the largest free region

▪ Worst fit actually has an advantage: after allocating

space, the remainder is probably also big enough to

store a memory segment

▪ Whereas placing a 15 KB segment in a 16 KB free

region will leave 1 KB… not as useful

Worst Fit?!

CS 326: Operating Systems 26



▪ Each of these FSM algorithms have their own

strengths/weaknesses

▪ You’ll implement all three in P3!

Wrapping Up

CS 326: Operating Systems 27


