CS 326: Operating Systems
Segmentation

Lecture 13



Today's Schedule

= Memory Organization
= The MMU

= Dealing with Fragmentation

CS 326: Operating Systems



Today's Schedule

- Memory Organization
= The MMU

= Dealing with Fragmentation

CS 326: Operating Systems



Thanks for the Memories

Think back to our memory locations example:

Address of uninitialized data = ©0x43405c

Address of initialized data = @x4238c4
Address of code = 0x4236T0
Address of a (stack) = @x7ed9b2e4
Address of b (stack) = Qx7ed9b2e8
Address of c (heap) = @x1f44150
Address of d (heap) = @x1144160

Given this, what do we know about memory organization?

CS 326: Operating Systems



Organization

The first thing we notice is that these locations may or
may not match our logical model of memory

(See: stack, heap, code, etc. figure)
They also vary depending on the machine we run our

code on
macOS: stack seems to be growing "up” (each
subsequent address is smaller than the last). Heap

grows “down”
VM: both stack and heap seem to grow down?

CS 326: Operating Systems



Digging Deeper

As you may suspect, the virtual memory allocated to
processes Is totally removed from physical memory

Why?

The first obvious reason: having a massive gap between

the stack and heap wastes memory
How would we even figure out how much space to

allocate to each process?
Too little: processes run out quickly

Too much: small processes waste resources

CS 326: Operating Systems



Tweaking the Address Space

Before, we had a single base + bound pair per process

Why not have a base + bound for each process

segment”
Segment: one of those memory regions, like the stack
or the heap

This means the MMU must support segmentation

CS 326: Operating Systems



Segmented Addresses

With segmentation, each segment has its own base +
bound pair
This allows for a sparse memory space

No need to allocate big, contiguous blocks of
memory!

We can even move segments around if they need to
be resized

So now we finally know what a segfault really is: an illegal
access outside of the segment

CS 326: Operating Systems



Segmentation and Fragmentation

What Your Process Sees What Your OS Sees

Static Data

Literals

Instructions

“Sweet!” “Plz Stahp”

CS 326: Operating Systems



Handling a Segfault

When an illegal access takes place, the MMU will
generate a hardware trap

This executes some privileged code in kernel space
Next, a SIGSEGV signal is sent to the offending process

(Usually) the process is terminated!

CS 326: Operating Systems

10



Today's Schedule

= Memory Organization
= The MMU

= Dealing with Fragmentation

CS 326: Operating Systems

11



Augmenting the MMU

= Since we're going to allow for multiple segments, we
need to update our concept of a hardware MMU

= Before, we tracked base + bound

= What do we need to track now?

CS 326: Operating Systems

12



Things to Keep Track Of

The type of segment

The base address

Segment size

Plus:
= Whether or not the segment grows up or down

= Protection bits

CS 326: Operating Systems

13



Protection BIts

Protection bits allow us to flag particular segments
based on what they are intended to be used for

For example, the code segment should be read-only
If it's not, then a program could modify itself at

runtime... Essentially rewriting its code in memory
Sounds crazy, but is quite common for rogue
software: if you can disable protection, you can
insert your own executable code in memory!

Stack/heap: read+write

CS 326: Operating Systems 14



—xecute Bit

Segments also support an execute bit — whether or
not the location in memory can be executed by the CPU

Code segment: execute

Stack/heap: not executable!
Otherwise, you could load CPU instructions into

memory, move there, and begin executing
So0? Well, imagine if a user visiting your website
figures out how to specially craft requests to
modify memory and add instructions...

CS 326: Operating Systems 15



NX Bit

Modern processors also support the NX Bit, which is
separate from segmentation
This allows entire regions of memory to be marked as

non-executable
Segmentation’s restrictions are very fine-grained in

comparison

CS 326: Operating Systems

16



Context Switching

Now that our MMU is more complex, how does this
impact context switching?
Well, mostly as we'd expect:

We can't just store a single base+bound, we also need

to store the different segment locations, sizes,
permissions, etc.

Context switching takes more effort in general

CS 326: Operating Systems 17



Today's Schedule

= Memory Organization
= The MMU

- Dealing with Fragmentation

CS 326: Operating Systems

18



Fragmentation

= We briefly discussed fragmentation last class

= With segmentation, the likelihood that things are

fragmented increases
= Why?

= Lots more "chunks” — segments of memory to deal with!

CS 326: Operating Systems

19



Handling Fragmentation

We can move segments around, and as long as we

update the physical addresses the process won't know
the difference

Unfortunately, moving memory requires copies to be

made, and copies are bad
Slow

Requires enough free space to do the transfer

CS 326: Operating Systems

20



Another Approach

Let's keep track of where segments are located in
memory

When we allocate a new segment, we'll find a suitable
region of free space and put it there

Need to know where all the segments are located

We can then develop free space management (FSM)
algorithms

CS 326: Operating Systems 21



Thought Experiment: FSM

= Let's come up with some ways to manage freed blocks
of memory.

CS 326: Operating Systems

22



FSM Algorithms

First fit — find the first free space available and put the
segment there
Best fit — find free space that closely matches the size of

the segment
Optimal: exactly the same size

Worst fit = find the largest empty region of memory and
use that

CS 326: Operating Systems

23



First Fit

lterate and locate free memory regions

If the region has enough room for the new segment,
then place it there

If not, continue
Good: simple, fast

Bad: might need to unnecessarily split up large regions
of memory

CS 326: Operating Systems

24



3est Fit

lterate and locate free memory regions
If the region is a perfect fit, use it immediately

Otherwise, continue until either:
A perfect fit is found

The closest fit is found
Good: will optimally reuse existing portions of memory

Bad: must iterate through all memory, and a non-perfect
fit might create very small fragments

CS 326: Operating Systems

25



Worst Fit?!

Why would you use a worst fit algorithm?
lterate and locate free memory regions
Use the largest free region

Worst fit actually has an advantage: after allocating
space, the remainder is probably also big enough to
store a memory segment

Whereas placing a 15 KB segmentina 16 KB free
region will leave 1 KB... not as useful

CS 326: Operating Systems

26



Wrapping Up

= Each of these FSM algorithms have their own
strengths/weaknesses

= You'llimplement all three in P3!

CS 326: Operating Systems

27



