CS 326: Operating Systems

“aging

Lecture 14

Today's Schedule

= Introduction to Paging

= Addressing Pages

CS 326: Operating Systems

Today's Schedule

= Introduction to Paging

= Addressing Pages

CS 326: Operating Systems

Memory Fragmentation

Thinking back to segmentation, one big issue is
memory fragmentation

We could move segments around... (say, on a fixed

interval like every 10 seconds)
Garbage collector style

...but this is very inefficient

Wouldn't it be great if we could assign parts of physical
memory to processes bit by bit instead?

CS 326: Operating Systems

Paging

We can use paging to allocate non-contiguous regions
of memory

With paging, each page of memory can be mapped to a
Process

Example: you get page 1, 3, 45, 682
Need more memory? Sure, here's page 981

This approach avoids fragmentation and reduces waste
Most memory we can waste: page_sz - 1

CS 326: Operating Systems

Page Frames

Physical memory is broken up into pieces called page

frames
Each page frame contains a single page

Pages are virtual, page frames are physical

Page frame sizes are OS and hardware specific
4KB, 2MB, 1GB on Intel x86_64

4KB is extremely common

Generally a power of 2

CS 326: Operating Systems

Address Space

—Xample

16

32

48

64

CS 326: Operating Systems

(page 0 of the address space)

(page 1)

(page 2)

(page 3)

16

32

48

64

80

96

112

128

reserved for OS

(unused)

page 3 of AS

page 0 of AS

(unused)

page 2 of AS

(unused)

page 1 of AS

page frame 0 of physical memory

page frame 1
page frame 2
page frame 3
page frame 4
page frame 5
page frame 6

page frame 7

Determining the Page Size

= Drumroll please!!

[magical-unicorn:~]1$%$ getconf PAGE_SIZE
4096

CS 326: Operating Systems

Tracking Memory

= Awesome! We've (mostly) eliminated fragmentation!

= Now comes the hard part: how do we figure out which
pages are allocated to our processes?

= We achieve this with a page table

CS 326: Operating Systems

Page Table

The page table is a structure maintained by the OS for
each process

When a process is swapped in or out, the page table is
as well

Page tables consist of page table entries (PTES)

CS 326: Operating Systems

10

A Page lable Entry

I

= PFN: "Physical frame number’

= There are several other fields...

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 3 2 1
= Eln|=
“"~---_Q_
PFN o|<|al<|0|2|Z

CS 326: Operating Systems

Page Table Entry Elements

Valid/Invalid bit — whether the memory is allocated
Used to provide our illusion of a single, giant address space
without having to actually allocate pages

Protection Bits — similar to the NX bit, segment protection bits,

etc.

Present bit —whether the page is actually in memory or not
Why do we need this?

Dirty bit —whether the page has been changed since it was
read into memory

And many more, depending on OS/hardware/etc.

CS 326: Operating Systems

12

Implementing the Page Table

The page table's main job is map virtual addresses to
physical addresses

There are plenty of options for doing this...

At a basic level, we can imagine using a simple array to

keep track of the locations
Virtual Page O = Physical Page Frame 3

Virtual Page 4 = Physical Page Frame 1

That's really all paging is... Keeping track of what
virtual pages map to particular physical frames

CS 326: Operating Systems

13

Page lable Translation

Virtual address space

0x00000000
0x00010000
text
0x10000000
data
" 'stack
o A

CS 326: Operating Systems

Physical address space

0x00000000

OxO0Offfif

|:| page belonging to process
D page not belonging to process

14

Address Translation

To facilitate this process, we use address translation to
convert virtual page = physical page

Split the memory address into two pieces: the virtual page
number and the offset

The virtual page number determines where in physical memory

the data is located
VPN = Page Table = Physical Page Frame

If we're using an array as our PT , these are the array indices

The offset indicates where the data is stored within the
physical page

CS 326: Operating Systems

15

Paging Issues

The main issue with paging is that page tables can
become quite large

4KB page size, 32-bit address space = Tm pages
It also takes time to do all this translating...

We can't just rely on a hardware component to save us

here: it would require too much of its own, fast memory!
We have a few options, including caching portions of
the address translations

CS 326: Operating Systems

16

Caching Translations

Recently-used translations are maintained by the MMU
in the translation lookaside buffer (TLB)

Using the TLB will be faster than the page table, but we

can only store a limited number of entries
If the TLB doesn't have the VPN we're looking up, it's
called a TLB miss

CS 326: Operating Systems

17

B3acking Store

In addition to fragmentation-free allocation, we can use
paging with a backing store
Commonly a disk, pages that are not used frequently

can be swapped out to disk
Frees up memory for other processes to use

When swapped memory is referenced by a program, a

page fault occurs
Must be reloaded back into main memory

In modern times, SSDs make this very fast

CS 326: Operating Systems 18

Translation Process

1. Checkthe TLB
= Mapping found? We're done!

= Otherwise, we have a TLB miss...

2. Consult the page table
= Page table hit? Add the entry to the TLB, and then
we're done!

= Otherwise, we have a page fault

3. Consult the backing store

CS 326: Operating Systems

Translation

ProCess

virtual address

CS 326: Operating Systems

» physical address

TLB hit
» TLB
— TLB miss
TLB writeT

-

— > page table
hit

page table

page not

page table write A

—‘ present

disk

20

Today's Schedule

= Introduction to Paging

- Addressing Pages

CS 326: Operating Systems

21

Virtual Addresses

With Paging, we can now piece together large, non-
contiguous portions of physical memory

These combine to give the illusion of a nice, big, de-
fragmented address space

As usual, processes do not need to know that they are
running under this virtualized memory scheme

CS 326: Operating Systems 22

Address Translation

= To help the OS keep track of where pages are located,
memory addresses are split up

= |In the most basic case, the addresses are split into two
pleces:

= The virtual page number
= The offset

CS 326: Operating Systems

23

Address Translation

= Here's a single address split into VPN/offset:

VPN

offset

Vab

Va4

Va3

Va2

Vat

Va0

CS 326: Operating Systems

24

VPN

The VPN (virtual page number) tells the OS which page
the memory is located in via the page table

The offset specifies what part of the page to move to

We have a level of indirection here: determine the page

number, then figure out what byte to start at
Note: the offset portion of the address is the same for
both virtual and physical memory... why”?

CS 326: Operating Systems 25

Virtual vs. Physical

With Paging, the physical and virtual addresses can be
different sizes

We don't necessarily have a 1:1 mapping between
pages and frames

e.g., we have a 32-bit system (232 = 4 GB address
space), but only 1T GB of RAM installed

If the virtual address space is larger than the physical,
those extra pages will be swapped to disk

CS 326: Operating Systems

26

Inverted Page lable

With an inverted page table, the page table actually
does map directly to physical addresses

Instead of a page table per process, there is a single
page table for the system

Address translation requires searching the entire page

table
Often implemented as a hash table with PIDs stored
as part of the memory address for access protection

CS 326: Operating Systems 27

Page Table Entries

If we have a 32-bit machine with a page size of 4 KB,

how many page table entries do we have?

4 KB = 4096 bytes, or 212
(log2(4096) = 12)

So that means we need 12 bits for the offset
32 bits — 12 offset bits = 20 bits for the VPN

Entries (one for each page) = 229 (~1m)

CS 326: Operating Systems

28

Page Table Size

To calculate our page table size:
Entries * sizeof(PTE)

(straightforward)

So if each PTE takes up 4 bytes then we have:
1MB*4 =4 MB (on our example 32 bit machine)

4 MB is not too bad... except we need a page table for
every process!

CS 326: Operating Systems

29

-xample Address Structure: xvo

A virtual address 'la' has a three-part structure as follows:

e 10------ to-omm-- 10------- to-mmo - 12---------- +
| Page Directory | Page Table | Offset within Page |
| Index | Index | |
R - - - - - - - - +

\--- PDX(va) --/ \--- PTX(va) --/

CS 326: Operating Systems 30

Page Directory”?

Here, page directories point to page tables, which then
point to physical addresses

This allows the OS to omit page tables when large
ranges of virtual addresses are unused

It takes a lot of memory just to store the page table
Generally, portions of the page table itself can be
stored in virtual memory and could even be swapped
to the disk if needed

CS 326: Operating Systems 31

Mapped Memory

We spent some time discussing how mmap lets us
Share memory across processes

How can we implement this?

At a basic level: both processes’ page tables have valid
mappings for the shared memory region

CS 326: Operating Systems

32

Wrapping Up

Paging gives us much more flexibility when managing
memory compared to a simple base + bound or
segmentation

Most modern OS implement some form of paging

The main thing to remember: those memory addresses

you see are fake
They're getting translated to actual physical locations

in RAM

CS 326: Operating Systems

33

