
Paging

CS 326: Operating Systems

Lecture 14

▪ Introduction to Paging

▪ Addressing Pages

Today’s Schedule

CS 326: Operating Systems 2

▪ Introduction to Paging

▪ Addressing Pages

Today’s Schedule

CS 326: Operating Systems 3

▪ Thinking back to segmentation, one big issue is

memory fragmentation

▪ We could move segments around… (say, on a fixed

interval like every 10 seconds)

▪ Garbage collector style

▪ …but this is very inefficient

▪ Wouldn’t it be great if we could assign parts of physical

memory to processes bit by bit instead?

Memory Fragmentation

CS 326: Operating Systems 4

▪ We can use paging to allocate non-contiguous regions

of memory

▪ With paging, each page of memory can be mapped to a

process

▪ Example: you get page 1, 3, 45, 682

▪ Need more memory? Sure, here’s page 981

▪ This approach avoids fragmentation and reduces waste

▪ Most memory we can waste: page_sz - 1

Paging

CS 326: Operating Systems 5

▪ Physical memory is broken up into pieces called page

frames

▪ Each page frame contains a single page

▪ Pages are virtual, page frames are physical

▪ Page frame sizes are OS and hardware specific

▪ 4KB, 2MB, 1GB on Intel x86_64

▪ 4KB is extremely common

▪ Generally a power of 2

Page Frames

CS 326: Operating Systems 6

Address Space Example

CS 326: Operating Systems 7

▪ Drumroll please!!

[magical-unicorn:~]$ getconf PAGE_SIZE
4096

Determining the Page Size

CS 326: Operating Systems 8

▪ Awesome! We’ve (mostly) eliminated fragmentation!

▪ Now comes the hard part: how do we figure out which

pages are allocated to our processes?

▪ We achieve this with a page table

Tracking Memory

CS 326: Operating Systems 9

▪ The page table is a structure maintained by the OS for

each process

▪ When a process is swapped in or out, the page table is

as well

▪ Page tables consist of page table entries (PTEs)

Page Table

CS 326: Operating Systems 10

▪ PFN: “Physical frame number”

▪ There are several other fields…

A Page Table Entry

CS 326: Operating Systems 11

▪ Valid/Invalid bit – whether the memory is allocated

▪ Used to provide our illusion of a single, giant address space

without having to actually allocate pages

▪ Protection Bits – similar to the NX bit, segment protection bits,

etc.

▪ Present bit – whether the page is actually in memory or not

▪ Why do we need this?

▪ Dirty bit – whether the page has been changed since it was

read into memory

▪ And many more, depending on OS/hardware/etc.

Page Table Entry Elements

CS 326: Operating Systems 12

▪ The page table’s main job is map virtual addresses to

physical addresses

▪ There are plenty of options for doing this…

▪ At a basic level, we can imagine using a simple array to

keep track of the locations

▪ Virtual Page 0 ➔ Physical Page Frame 3

▪ Virtual Page 4 ➔ Physical Page Frame 1

▪ That’s really all paging is… Keeping track of what

virtual pages map to particular physical frames

Implementing the Page Table

CS 326: Operating Systems 13

Page Table Translation

CS 326: Operating Systems 14

▪ To facilitate this process, we use address translation to

convert virtual page ➔ physical page

▪ Split the memory address into two pieces: the virtual page

number and the offset

▪ The virtual page number determines where in physical memory

the data is located

▪ VPN ➔ Page Table ➔ Physical Page Frame

▪ If we’re using an array as our PT , these are the array indices

▪ The offset indicates where the data is stored within the

physical page

Address Translation

CS 326: Operating Systems 15

▪ The main issue with paging is that page tables can

become quite large

▪ 4KB page size, 32-bit address space = 1m pages

▪ It also takes time to do all this translating…

▪ We can’t just rely on a hardware component to save us

here: it would require too much of its own, fast memory!

▪ We have a few options, including caching portions of

the address translations

Paging Issues

CS 326: Operating Systems 16

▪ Recently-used translations are maintained by the MMU

in the translation lookaside buffer (TLB)

▪ Using the TLB will be faster than the page table, but we

can only store a limited number of entries

▪ If the TLB doesn’t have the VPN we’re looking up, it’s

called a TLB miss

Caching Translations

CS 326: Operating Systems 17

▪ In addition to fragmentation-free allocation, we can use

paging with a backing store

▪ Commonly a disk, pages that are not used frequently

can be swapped out to disk

▪ Frees up memory for other processes to use

▪ When swapped memory is referenced by a program, a

page fault occurs

▪ Must be reloaded back into main memory

▪ In modern times, SSDs make this very fast

Backing Store

CS 326: Operating Systems 18

1. Check the TLB

▪ Mapping found? We’re done!

▪ Otherwise, we have a TLB miss…

2. Consult the page table

▪ Page table hit? Add the entry to the TLB, and then

we’re done!

▪ Otherwise, we have a page fault

3. Consult the backing store

Translation Process

CS 326: Operating Systems 19

Translation Process

CS 326: Operating Systems 20

▪ Introduction to Paging

▪ Addressing Pages

Today’s Schedule

CS 326: Operating Systems 21

▪ With Paging, we can now piece together large, non-

contiguous portions of physical memory

▪ These combine to give the illusion of a nice, big, de-

fragmented address space

▪ As usual, processes do not need to know that they are

running under this virtualized memory scheme

Virtual Addresses

CS 326: Operating Systems 22

▪ To help the OS keep track of where pages are located,

memory addresses are split up

▪ In the most basic case, the addresses are split into two

pieces:

▪ The virtual page number

▪ The offset

Address Translation

CS 326: Operating Systems 23

▪ Here’s a single address split into VPN/offset:

Address Translation

CS 326: Operating Systems 24

▪ The VPN (virtual page number) tells the OS which page

the memory is located in via the page table

▪ The offset specifies what part of the page to move to

▪ We have a level of indirection here: determine the page

number, then figure out what byte to start at

▪ Note: the offset portion of the address is the same for

both virtual and physical memory… why?

VPN

CS 326: Operating Systems 25

▪ With Paging, the physical and virtual addresses can be

different sizes

▪ We don’t necessarily have a 1:1 mapping between

pages and frames

▪ e.g., we have a 32-bit system (= 4 GB address

space), but only 1 GB of RAM installed

▪ If the virtual address space is larger than the physical,

those extra pages will be swapped to disk

Virtual vs. Physical

CS 326: Operating Systems 26

▪ With an inverted page table, the page table actually

does map directly to physical addresses

▪ Instead of a page table per process, there is a single

page table for the system

▪ Address translation requires searching the entire page

table

▪ Often implemented as a hash table with PIDs stored

as part of the memory address for access protection

Inverted Page Table

CS 326: Operating Systems 27

▪ If we have a 32-bit machine with a page size of 4 KB,

how many page table entries do we have?

▪ 4 KB = 4096 bytes, or

()

▪ So that means we need 12 bits for the offset

▪ 32 bits – 12 offset bits = 20 bits for the VPN

▪ Entries (one for each page) = (~1m)

Page Table Entries

CS 326: Operating Systems 28

▪ To calculate our page table size:

▪ Entries * sizeof(PTE)

▪ (straightforward)

▪ So if each PTE takes up 4 bytes then we have:

▪ 1 MB * 4 = 4 MB (on our example 32 bit machine)

▪ 4 MB is not too bad… except we need a page table for

every process!

Page Table Size

CS 326: Operating Systems 29

A virtual address 'la' has a three-part structure as follows:

+--------10------+-------10-------+---------12----------+
| Page Directory | Page Table | Offset within Page |
| Index | Index | |
+----------------+----------------+---------------------+
 \--- PDX(va) --/ \--- PTX(va) --/

Example Address Structure: xv6

CS 326: Operating Systems 30

▪ Here, page directories point to page tables, which then

point to physical addresses

▪ This allows the OS to omit page tables when large

ranges of virtual addresses are unused

▪ It takes a lot of memory just to store the page table

▪ Generally, portions of the page table itself can be

stored in virtual memory and could even be swapped

to the disk if needed

Page Directory?

CS 326: Operating Systems 31

▪ We spent some time discussing how mmap lets us

share memory across processes

▪ How can we implement this?

▪ …

▪ At a basic level: both processes’ page tables have valid

mappings for the shared memory region

Mapped Memory

CS 326: Operating Systems 32

▪ Paging gives us much more flexibility when managing

memory compared to a simple base + bound or

segmentation

▪ Most modern OS implement some form of paging

▪ The main thing to remember: those memory addresses

you see are fake

▪ They’re getting translated to actual physical locations

in RAM

Wrapping Up

CS 326: Operating Systems 33

