
File Systems

CS 326: Operating Systems

Lecture 15

CS 326: Operating Systems 2

CS 326: Operating Systems 3

▪ File System Basics

▪ Mount Points

Today’s Agenda

CS 326: Operating Systems 4

▪ File System Basics

▪ Mount Points

Today’s Agenda

CS 326: Operating Systems 5

▪ System memory (RAM) is a great way to store data

▪ It’s super fast!

▪ As we studied over the last few weeks, we can even

share it among our processes

▪ So why would we need disks, a.k.a. secondary

storage?

▪ Large hard disks are more cost effective ($/MB)

▪ Hard disks retain information even when they are

powered off

Who Needs Disks?

CS 326: Operating Systems 6

▪ Pros

▪ Cheap

▪ Big

▪ Lots of connectivity options

▪ USB External, SATA, etc.

▪ Cons

▪ Slow!

▪ Slow!

▪ (repeated for emphasis)

▪ Spinning (mechanical) disks are more prone to failure

Disk Trade-Offs

CS 326: Operating Systems 7

▪ We can view a disk as a giant array of bytes

▪ Want to store something? Just go and update the

data in the array

▪ However, as usual, we don’t give each process its own

disk

▪ Rather than dividing up the disk by process, we

represent it using one or more file systems

▪ Dividing up space based on files instead

A Simplistic View of Disks

CS 326: Operating Systems 8

▪ Files are a better abstraction for data stored on disks

because sharing happens much more often

▪ We can open a text file in vim, edit it, and then compile it

using gcc

▪ Having an explicit mechanism for these sharing

operations goes a long way towards program

interoperability

▪ A file system defines how files are organized and laid

out on the disk

Files

CS 326: Operating Systems 9

▪ So, we have this large array of bytes and we want to split

it up into files…

▪ We could take an approach that looks like our malloc()

implementation:

▪ Prefix each file with some metadata about its size, file

name, etc.

▪ Include the file data right after

▪ Pointer to the next file on the disk

▪ Issues?

A Basic File System

CS 326: Operating Systems 10

▪ We don’t have support for folders

▪ “Flat” namespace

▪ Operations like ls take forever because we have to

scan the entire linked list

▪ Finding a file also takes a long time

▪ You thought O(n) was bad on a CPU? Try it on a hard

disk!

▪ We’ll have fragmentation when files are deleted or

moved around

Problems with our Basic FS

CS 326: Operating Systems 11

▪ The first thing we need is a way to store file metadata

▪ inodes

▪ Nobody really knows what the ‘i’ stands for, but it’s

thought to be ‘index’ – ‘index node.’

▪ inodes contain file ownership, permissions, serial

numbers, timestamps, size info, etc.

▪ But not the file name!

Metadata

CS 326: Operating Systems 12

▪ We need to create an index of the files we have stored

on the disk

▪ Rather than reading the entire file system each time,

we’ll just consult the index

▪ File name information is stored in dentries

▪ Directory entries

▪ File names get mapped to inode numbers

Indexing: dentry

CS 326: Operating Systems 13

▪ Separating inodes from file names gives us more

flexibility

▪ Each file name links to an inode

▪ We can have several file names all pointing at the same

inode to create duplicates

▪ No impact on disk space!

▪ Try it for yourself: the ln command

▪ Related: symlinks (ln -s)

Link Count [1/3]

CS 326: Operating Systems 14

▪ When you create a new directory, its link count will start

at 2

▪ Hmm… Why?

▪ Each directory has . and .. links

▪ . – links to the directory itself (./blah)

▪ .. – links to the parent dir

▪ So the hard link count of 2 comes from the . and the

directory file name

Link Count [2/3]

CS 326: Operating Systems 15

▪ When we delete directories with rm -r , these entries

will be cleaned up as well

▪ When a file or directory link count reaches 0, the file is

effectively deleted

▪ Behind the scenes, deleting is actually an ‘unlink’

operation

▪ If data isn’t linked, we can safely write over it

▪ Much like memory allocation…

Link Count [3/3]

CS 326: Operating Systems 16

ls -l

CS 326: Operating Systems 17

Fragmentation [1/3]

CS 326: Operating Systems 18

▪ We also mentioned that fragmentation can be a

problem, especially with old file systems

▪ You’ll need to use a disk defragmenter to move files

around and eliminate gaps

▪ Most modern file systems have other ways of dealing

with this, but it’s always going to be (somewhat) a

problem

Fragmentation [2/3]

CS 326: Operating Systems 19

▪ To avoid fragmentation, we can split the disk into many

small blocks

▪ Next, we’ll pre-allocate larger extents made up of

several blocks for the files to grow into

▪ This reduces the chances that tons of tiny blocks

will be interleaved

▪ Another approach: defragment small files when you

open them

▪ HFS+ on macOS does this

Fragmentation [3/3]

CS 326: Operating Systems 20

▪ Disks are split into many small blocks

▪ We keep track of where all these blocks are with the

superblock

▪ The superblock contains master file system information

▪ Block extents, locations, file system info

▪ If we lose the superblock, our FS may be unrecoverable

▪ Many FS incorporate superblock backups or split superblock

info up into smaller pieces distributed across the disk

The Superblock

CS 326: Operating Systems 21

▪ File System Basics

▪ Mount Points

Today’s Agenda

CS 326: Operating Systems 22

▪ All Unix directory hierarchies start with /

▪ The root directory

▪ We organize our files into a directory structure

▪ a.k.a. folders

▪ Unix systems generally include some default directories such

as:

▪ /bin – binary utilities

▪ /var – place for OS to write files during operation

▪ /etc – configuration

▪ /home – user home directories

Disk Structure

CS 326: Operating Systems 23

A Sample File System Tree

CS 326: Operating Systems 24

▪ If we have more than one disk, could we have two root

directories?

▪ No!

▪ Instead, we mount other disks underneath our root file

system

▪ For example, his allows me to mount another file

system under /home

▪ After mounting, files inside /home are are on another

disk

Dealing with Multiple Disks

CS 326: Operating Systems 25

▪ Windows (and DOS, and OS/2) takes another approach: each disk is

given a drive letter

▪ In early OS, you’d access a file like this A:FILE.TXT
▪ No directory support

▪ Many folks had two floppy drives, A: and B:

▪ This abstraction is easier to understand, but tends to be less powerful

▪ If we want to move program data to a separate hard drive on Unix-based

systems, we can usually just copy it over and mount the new drive in the same

location

▪ On Windows, we will probably have to edit the registry

▪ ew

▪ Note: Windows can mount drives under folders just like Unix, but seeing

it done in production is less common

Drive Letters

CS 326: Operating Systems 26

▪ The mount command works as follows:

▪ mount -t fs_type /dev/sdb /some/mount/point

▪ Generally, we don’t have to specify the file system type;

just the device and mount point

▪ Let’s create a “disk” and experiment with this a bit…

Mounting a Disk

CS 326: Operating Systems 27

