CS 326: Operating Systems
Fille Systems

Lecture 15

CS 326: Operating Systems

‘:pu_ﬂq -
ré‘o‘ ¢

2

LI

Jirange

i
'

. |
sudorm -rf/

o . rm: permission denied

¥ sudo rm -rf /|
D-preserve-root |

CS 326: Operating Systems

Today's Agenda

= File System Basics

= Mount Points

CS 326: Operating Systems

Today's Agenda

- File System Basics

= Mount Points

CS 326: Operating Systems

Who Needs Disks?

System memory (RAM) is a great way to store data
It's super fast!

As we studied over the last few weeks, we can even
share it among our processes

So why would we need disks, a.k.a. secondary
storage”

Large hard disks are more cost effective ($/MB)

Hard disks retain information even when they are
powered off

CS 326: Operating Systems

Disk Trade-0Offs

= Pros
= Cheap

= Big
= Lots of connectivity options

= USB External, SATA, etc.

= Cons
= Slow!

= Slow!
= (repeated for emphasis)

= Spinning (mechanical) disks are more prone to failure

CS 326: Operating Systems

A Simplistic View of Disks

We can view a disk as a giant array of bytes
Want to store something? Just go and update the
data in the array

However, as usual, we don't give each process its own
disk
Rather than dividing up the disk by process, we

represent it using one or more file systems
Dividing up space based on files instead

CS 326: Operating Systems

Files

Files are a better abstraction for data stored on disks
because sharing happens much more often

We can open a text file in vim, edit it, and then compile it
using gcc

Having an explicit mechanism for these sharing
operations goes a long way towards program
iInteroperability

A file system defines how files are organized and laid
out on the disk

CS 326: Operating Systems

A Basic File System

S0, we have this large array of bytes and we want to split
It up into files...

We could take an approach that looks like our malloc()
implementation:

Prefix each file with some metadata about its size, file
name, etc.

Include the file data right after

Pointer to the next file on the disk

|Issues?

CS 326: Operating Systems 10

Problems with our Basic FS

We don't have support for folders
“Flat” namespace

Operations like 1s take forever because we have to
scan the entire linked list

Finding a file also takes a long time

You thought O(n) was bad ona CPU? Try it on a hard
disk!

We'll have fragmentation when files are deleted or
moved around

CS 326: Operating Systems 11

Metadata

The first thing we need is a way to store file metadata

inodes

Nobody really knows what the ‘i stands for, but it's
thought to be ‘index’ —‘index node.

iInodes contain file ownership, permissions, serial
numbers, timestamps, size info, etc.

But not the file name!

CS 326: Operating Systems

12

Indexing: dentry

We need to create an index of the files we have stored
on the disk

Rather than reading the entire file system each time,
we'll just consult the index

File name information is stored in dentries
Directory entries

File names get mapped to inode numbers

CS 326: Operating Systems

13

Link Count [1/3]

Separating inodes from file names gives us more
flexibility
Each file name links to an inode

We can have several file names all pointing at the same

Inode to create duplicates
No impact on disk space!

Try it for yourself: the 1n command
Related: symlinks (1n -s)

CS 326: Operating Systems

14

Link Count [2/3]

When you create a new directory, its link count will start

at 2
Hmm... Why?

Each directoryhas . and .. links
. —links to the directory itself (. /blah)

.. —links to the parent dir

So the hard link count of 2 comes from the . andthe
directory file name

CS 326: Operating Systems

15

Link Count [3/3]

When we delete directories with rm -r , these entries
will be cleaned up as well

When a file or directory link count reaches O, the file is
effectively deleted

Behind the scenes, deleting is actually an ‘unlink’

operation
If data isn't linked, we can safely write over it

Much like memory allocation...

CS 326: Operating Systems 16

S -

Total Blocks for this directory

[silicon:~/226/hw6-malensek]$ 1s -1 Size (bytes)
total 44 Last Modification
—PW——————= 1 matthew staff 130 A#T 23 16fﬁ§’a;:;file

—-PW——————= 1 matthew staff 1375 Apr 23 16:43 README.md
drwx—————- 2 matthew staff 64 Apr 25 15:05 a_dir

—PWX—————— matthew staff 9288 Apr 25 15:05 client

—-PW——————= matthew staff 2453 Apr 23 17:39 client.c

-PW————- matthew staff 356 Apr 23 17:30 common.h

—PWX———F—— matthew staff 9136 Apr 25 15:05 server

-rw-r matthew staff 2854 A 17:43 server.c
Link Count Permlssm:ls\‘\
Owner Group

(User, Grp, Others)

CS 326: Operating Systems

Fragmentation [1/3]

%% Defragmenting Drive C

+ D 1
=================i=========:=g=:================i========== ——=t et d
Defragmenting file spstem... Stap
ERRERER
20% Complete Legend

CS 326: Operating Systems

Fragmentation [2/3]

We also mentioned that fragmentation can be a
problem, especially with old file systems
You'll need to use a disk defragmenter to move files
around and eliminate gaps
Most modern file systems have other ways of dealing
with this, but it's always going to be (somewhat) a
problem

CS 326: Operating Systems

19

Fragmentation [3/3]

To avoid fragmentation, we can split the disk into many

small blocks

Next, we'll pre-allocate larger extents made up of
several blocks for the files to grow into
This reduces the chances that tons of tiny blocks
will be interleaved

Another approach: defragment small files when you

open them
HFS+ on macOS does this

CS 326: Operating Systems 20

The Superblock

Disks are split into many small blocks
We keep track of where all these blocks are with the
superblock

The superblock contains master file system information
Block extents, locations, file system info

If we lose the superblock, our FS may be unrecoverable
Many FS incorporate superblock backups or split superblock
info up into smaller pieces distributed across the disk

CS 326: Operating Systems

21

Today's Agenda

= File System Basics

= Mount Points

CS 326: Operating Systems

22

DiIsk Structure

All Unix directory hierarchies start with /
The root directory

We organize our files into a directory structure
a.k.a. folders

Unix systems generally include some default directories such
as:.

/bin —binary utilities

/var — place for OS to write files during operation

/etc — configuration

/home — user home directories

CS 326: Operating Systems

23

A Sample File System Tree

foo bar

bar.txt bar foo

bar.txt

CS 326: Operating Systems

24

Dealing with Multiple Disks

= |[f we have more than one disk, could we have two root
directories?
= No!
= |nstead, we mount other disks underneath our root file

system
= For example, his allows me to mount another file
system under /home

= After mounting, files inside /home are are on another
disk

CS 326: Operating Systems

25

Drive Letters

Windows (and DOS, and OS/2 %7) takes another approach: each disk is

given a drive letter

In early OS, you'd access afile like this A:FILE.TXT
No directory support

Many folks had two floppy drives, A: and B:

This abstraction is easier to understand, but tends to be less powerful

If we want to move program data to a separate hard drive on Unix-based
systems, we can usually just copy it over and mount the new drive in the same
location

On Windows, we will probably have to edit the registry

ew

Note: Windows can mount drives under folders just like Unix, but seeing
it done in production is less common

CS 326: Operating Systems 26

Mounting a Disk

The mount command works as follows:
mount -t fs_type /dev/sdb /some/mount/point

Generally, we don't have to specify the file system type;
just the device and mount point

Let’s create a "disk”™ and experiment with this a bit...

CS 326: Operating Systems 27

