CS 326: Operating Systems

Disk Scheduling and SSDs

Lecture 17

Today's Schedule

= Disk Scheduling
= Scheduling Algorithms
= SSDs

CS 326: Operating Systems

Today's Schedule

= Disk Scheduling
= Scheduling Algorithms
= SSDs

CS 326: Operating Systems

Disk Scheduling

The usual question we ask in this class: how do we
virtualize hard disk drives?

One partis the file system, as we've studied
The other ingredient is disk scheduling

If we are careful about how we make requests from

various processes, we can improve performance
If not? We'll spend most of our time seeking around
the disk and not actually doing anything!

CS 326: Operating Systems

Disk Scheduling: Core Principles

Passing I/O requests directly to the underlying hardware
s inefficient

Layering violation: applications are required to

understand hardware details

Coordination: spatial locality of requests not
considered

Instead, I/O concerns are handled by a variety of OS
subsystems, including the 1/0 Scheduler

CS 326: Operating Systems

Linux File System Layer

mmap

v (anonymous pages)
[Applications (processes) |
malloc
al g % 8| g
ready, ... = 2 = B
+ ﬁ E) “ E
9
- ™ r ™
VFS
N
 Block-based FS | NetworkFS ~ PseudoFS | Special
@2 ot e xf NFS cods) G P -
beh) i Gowo) b) - G @D M o
' Stackable FS -
coryptts | (overlayis) (wnionss) | FUSE)
- .
P userspace (¢.g. sshfs)
——>» network

Image Credit: Thomas-Krenn AG, Linux Storage Stack Diagram

CS 326: Operating Systems

Block /O Layer

BIOs ¢ #BIOS
(Block Layer
I/O scheduler blkmgq

(BIOs to requests | multi queue
noop Software

cfq queues

1
Hardware Hardware
dispatch

dispatch
queues

Image Credit: Thomas-Krenn AG, Linux Storage Stack Diagram

CS 326: Operating Systems

Today's Schedule

= Disk Scheduling
- Scheduling Algorithms
= SSDs

CS 326: Operating Systems

Algorithms

FIFO Queue

Elevator

Deadline

Anticipatory

Completely Fair Queueing

CS 326: Operating Systems

FIFO Queue

The simplest way to handle incoming I/O requests is a
first-in, first-out queue

Similar to submitting requests directly, but

coordinated

Enhancement: request merging
Rather than issuing 1000 requests to read a 4 MB file,
merge logically contiguous requests together

In Linux, this is implemented by the noop scheduler
Optimal for enterprise RAID systems, hardware
schedulers/caches, VMs* and SSDs*

CS 326: Operating Systems

10

The Elevator Algorithm

= Attempts to minimize changes

In direction
= Optimized for the physics of
spinning disks

= Similar to riding an elevator!
= Focus on overall throughput,
not individual speed

CS 326: Operating Systems 11

The Original Linux Scheduler

One-way scan elevator: elevator_linus
Always scans in order of increasing LBAs (logical
block addresses)

Sequence numbers are assigned to requests to control

latencies
Essentially forces requests to be flushed once
enough accumulate (allows more disk head direction
changes)

Maintained as a doubly-linked list of I/0O requests
Finding insertion/merge point: O(n) —not scalable!

CS 326: Operating Systems 12

The Deadline Scheduler [1/2]

Both noop and the elevator algorithm emphasize

throughput at the cost of latency
Can result in starvation

Deadline scheduling: assign a deadline to each |/0O
request

Requests are grouped by logical block address to
optimize for disk head movements

After servicing each group, the deadline queue is
checked to see if any groups are being starved

CS 326: Operating Systems 13

The Deadline Scheduler [2/2]

Reads are prioritized over writes because processes
often block while waiting for data from disk

Best suited for multi-threaded workloads or small,
random reads combined with sequential buffered writes
(databases)

Provides good performance for VMs and SSDs handling

multiple workloads
Interestingly, most consumer SSDs benefit from
request merging and LBA groupings

CS 326: Operating Systems 14

Anticipatory Scheduling [1/2]

A research scheduler, initially implemented in FreeBSD

to deal with deceptive idleness
Processes often appear to have stopped doing I/0,
but they're simply preparing for the next request

Allows the disk to idle for a short period of time after

servicing a request
Exploits spatial locality

29-71% throughput improvement in disk-intensive
Apache HT TP server workloads

CS 326: Operating Systems

15

Anticipatory Scheduling [2/2]

= Major issue: Requires application-specific tuning to get
best performance

= \Was the default Linux scheduler from kernel version

2.6.0t0 2.6.18
= Replaced by CFQ (Completely Fair Queuing)

CS 326: Operating Systems 16

Completely Fair Queuing [1/2]

Based on stochastic fairness queuing. each data flow is
assigned to a fixed number of queues with a hash

function
Frequently used to manage network traffic

Queues are serviced on a round robin basis

When the number of requests increases, collisions
become much more likely

In CFQ, each thread group in the system gets its own
gueue to avoid collisions

CS 326: Operating Systems

17

Completely Fair Queuing [2/2]

= Supports a tunable
idleness delay to handle
deceptive idleness

_ arrivals
supports deadline
gueues

= Low latency mode: also classify /

= Weighted fair queuing

allows |/O prioritization

CS 326: Operating Systems

18

MQ Schedulers

All the previous schedulers we've discussed were

designed for a single I/0O queue
A design consideration from the spinning disk era

To cope with modern storage (mostly SSDs) Linux

switched to multi-queue (MQ) schedulers
CFQ was removed from the kernel in 2019, replaced
with BFQ (budget fair queuing)

BFQ/CFQ can be configured to mimic anticipatory
scheduling

CS 326: Operating Systems

19

Choosing a Scheduler

There are three schedulers available by default:
noop, mg-deadline, BFQ, and maybe kyber

kyber: noop + extra optimizations for fast SSDs
(~1000 lines of code)

To determine which scheduler you're using:
cat /sys/block/${DEVICE}/queue/scheduler

Schedulers can be swapped at run time, on a per-
device basis

CS 326: Operating Systems 20

Today's Schedule

= Disk Scheduling
= Scheduling Algorithms
- SSDs

CS 326: Operating Systems

21

Solid State Drives

Unlike HDDs, SDDs have no moving parts

More akin to the RAM in your PC rather than the
spinning DVD/Blu-Ray drive (going out of style...)

SSD cells store a charge
Multi-level cells store more than a single bit per cell

Banks of these cells make up larger units of storage

Most SSDs contain multiple banks
Combined via a microcontroller

CS 326: Operating Systems

22

BloCKS

Each bank contains multiple blocks
~128 - 256 KB

Each block contains multiple pages (sounds eerily

familiar, huh?)
~4 KB

Most SSD operations are performed on the block level

rather than individual cells
Most files take up more than 1 bit of space, after all

CS 326: Operating Systems

23

Reading SSDs

The great thing about SSDs is that we can read from
anywhere, any time

No worrying about the location of the data

Higher performance SSDs support multiple reads at the
same time

CS 326: Operating Systems

24

Writing SSDs

Writing gets a bit messier

Before a write to a page can be performed, the block
being written must be erased

Since each block contains multiple pages, we have to

store them somewhere first
We need to read the block into memory, update its
state, and then write it

Write amplification

CS 326: Operating Systems

25

Boosting Write Performance

= As you can imagine, re-writing blocks is time consuming

= To improve the performance of write operations, the
SSD controller will split the requests up

= Requests are handled concurrently by different cells

CS 326: Operating Systems 26

F2FS: A Flash-Specific FS

Given that many file systems and scheduling algorithms
are designed for HDDs, SSD performance is not always
optimal
There is no such thing as seek time, so do we need to
combine requests that are close to one another?

What about multi-threaded access?

Samsung created a new file system to help improve the

performance of flash-based devices
Flash-Friendly File System (F2FS)

CS 326: Operating Systems

27

Motivation

For years, file systems have been designed with
spinning disks in mind

These days the reality is much different

SSDs are commonly deployed in server environments
Flash has its own set of considerations:

Erase-before-write

Write amplification

Limited cell life

CS 326: Operating Systems

28

Other Efforts

Apple recently migrated macQS, iOS, etc. devices to

their new APFS

Has several optimizations/accommodations for flash-
based storage

As mentioned earlier, kyber is the answer on the Linux
side of things

Windows undoubtedly has optimized for SSDs, but of
course development is proprietary

We're still seeing huge progress being made with CPU
and disk schedulers, even today!

CS 326: Operating Systems 29

