
Disk Scheduling and SSDs

CS 326: Operating Systems

Lecture 17

▪ Disk Scheduling

▪ Scheduling Algorithms

▪ SSDs

Today’s Schedule

CS 326: Operating Systems 2

▪ Disk Scheduling

▪ Scheduling Algorithms

▪ SSDs

Today’s Schedule

CS 326: Operating Systems 3

▪ The usual question we ask in this class: how do we

virtualize hard disk drives?

▪ One part is the file system, as we’ve studied

▪ The other ingredient is disk scheduling

▪ If we are careful about how we make requests from

various processes, we can improve performance

▪ If not? We’ll spend most of our time seeking around

the disk and not actually doing anything!

Disk Scheduling

CS 326: Operating Systems 4

▪ Passing I/O requests directly to the underlying hardware

is inefficient

▪ Layering violation: applications are required to

understand hardware details

▪ Coordination: spatial locality of requests not

considered

▪ Instead, I/O concerns are handled by a variety of OS

subsystems, including the I/O Scheduler

Disk Scheduling: Core Principles

CS 326: Operating Systems 5

Linux File System Layer

CS 326: Operating Systems 6

Block I/O Layer

CS 326: Operating Systems 7

▪ Disk Scheduling

▪ Scheduling Algorithms

▪ SSDs

Today’s Schedule

CS 326: Operating Systems 8

▪ FIFO Queue

▪ Elevator

▪ Deadline

▪ Anticipatory

▪ Completely Fair Queueing

Algorithms

CS 326: Operating Systems 9

▪ The simplest way to handle incoming I/O requests is a

first-in, first-out queue

▪ Similar to submitting requests directly, but

coordinated

▪ Enhancement: request merging

▪ Rather than issuing 1000 requests to read a 4 MB file,

merge logically contiguous requests together

▪ In Linux, this is implemented by the noop scheduler

▪ Optimal for enterprise RAID systems, hardware

schedulers/caches, VMs* and SSDs*

FIFO Queue

CS 326: Operating Systems 10

▪ Attempts to minimize changes

in direction

▪ Optimized for the physics of

spinning disks

▪ Similar to riding an elevator!

▪ Focus on overall throughput,

not individual speed

The Elevator Algorithm

CS 326: Operating Systems 11

▪ One-way scan elevator: elevator_linus
▪ Always scans in order of increasing LBAs (logical

block addresses)

▪ Sequence numbers are assigned to requests to control

latencies

▪ Essentially forces requests to be flushed once

enough accumulate (allows more disk head direction

changes)

▪ Maintained as a doubly-linked list of I/O requests

▪ Finding insertion/merge point: – not scalable!

The Original Linux Scheduler

CS 326: Operating Systems 12

▪ Both noop and the elevator algorithm emphasize

throughput at the cost of latency

▪ Can result in starvation

▪ Deadline scheduling: assign a deadline to each I/O

request

▪ Requests are grouped by logical block address to

optimize for disk head movements

▪ After servicing each group, the deadline queue is

checked to see if any groups are being starved

The Deadline Scheduler [1/2]

CS 326: Operating Systems 13

▪ Reads are prioritized over writes because processes

often block while waiting for data from disk

▪ Best suited for multi-threaded workloads or small,

random reads combined with sequential buffered writes

(databases)

▪ Provides good performance for VMs and SSDs handling

multiple workloads

▪ Interestingly, most consumer SSDs benefit from

request merging and LBA groupings

The Deadline Scheduler [2/2]

CS 326: Operating Systems 14

▪ A research scheduler, initially implemented in FreeBSD

to deal with deceptive idleness

▪ Processes often appear to have stopped doing I/O,

but they’re simply preparing for the next request

▪ Allows the disk to idle for a short period of time after

servicing a request

▪ Exploits spatial locality

▪ 29-71% throughput improvement in disk-intensive

Apache HTTP server workloads

Anticipatory Scheduling [1/2]

CS 326: Operating Systems 15

▪ Major issue: Requires application-specific tuning to get

best performance

▪ Was the default Linux scheduler from kernel version

2.6.0 to 2.6.18

▪ Replaced by CFQ (Completely Fair Queuing)

Anticipatory Scheduling [2/2]

CS 326: Operating Systems 16

▪ Based on stochastic fairness queuing: each data flow is

assigned to a fixed number of queues with a hash

function

▪ Frequently used to manage network traffic

▪ Queues are serviced on a round robin basis

▪ When the number of requests increases, collisions

become much more likely

▪ In CFQ, each thread group in the system gets its own

queue to avoid collisions

Completely Fair Queuing [1/2]

CS 326: Operating Systems 17

▪ Supports a tunable

idleness delay to handle

deceptive idleness

▪ Low latency mode: also

supports deadline

queues

▪ Weighted fair queuing

allows I/O prioritization

Completely Fair Queuing [2/2]

CS 326: Operating Systems 18

▪ All the previous schedulers we’ve discussed were

designed for a single I/O queue

▪ A design consideration from the spinning disk era

▪ To cope with modern storage (mostly SSDs) Linux

switched to multi-queue (MQ) schedulers

▪ CFQ was removed from the kernel in 2019, replaced

with BFQ (budget fair queuing)

▪ BFQ/CFQ can be configured to mimic anticipatory

scheduling

MQ Schedulers

CS 326: Operating Systems 19

▪ There are three schedulers available by default:

▪ noop, mq-deadline, BFQ, and maybe kyber

▪ kyber: noop + extra optimizations for fast SSDs

(~1000 lines of code)

▪ To determine which scheduler you’re using:

▪ cat /sys/block/${DEVICE}/queue/scheduler

▪ Schedulers can be swapped at run time, on a per-

device basis

Choosing a Scheduler

CS 326: Operating Systems 20

▪ Disk Scheduling

▪ Scheduling Algorithms

▪ SSDs

Today’s Schedule

CS 326: Operating Systems 21

▪ Unlike HDDs, SDDs have no moving parts

▪ More akin to the RAM in your PC rather than the

spinning DVD/Blu-Ray drive (going out of style…)

▪ SSD cells store a charge

▪ Multi-level cells store more than a single bit per cell

▪ Banks of these cells make up larger units of storage

▪ Most SSDs contain multiple banks

▪ Combined via a microcontroller

Solid State Drives

CS 326: Operating Systems 22

▪ Each bank contains multiple blocks

▪ ~128 – 256 KB

▪ Each block contains multiple pages (sounds eerily

familiar, huh?)

▪ ~4 KB

▪ Most SSD operations are performed on the block level

rather than individual cells

▪ Most files take up more than 1 bit of space, after all

Blocks

CS 326: Operating Systems 23

▪ The great thing about SSDs is that we can read from

anywhere, any time

▪ No worrying about the location of the data

▪ Higher performance SSDs support multiple reads at the

same time

Reading SSDs

CS 326: Operating Systems 24

▪ Writing gets a bit messier

▪ Before a write to a page can be performed, the block

being written must be erased

▪ Since each block contains multiple pages, we have to

store them somewhere first

▪ We need to read the block into memory, update its

state, and then write it

▪ Write amplification

Writing SSDs

CS 326: Operating Systems 25

▪ As you can imagine, re-writing blocks is time consuming

▪ To improve the performance of write operations, the

SSD controller will split the requests up

▪ Requests are handled concurrently by different cells

Boosting Write Performance

CS 326: Operating Systems 26

▪ Given that many file systems and scheduling algorithms

are designed for HDDs, SSD performance is not always

optimal

▪ There is no such thing as seek time, so do we need to

combine requests that are close to one another?

▪ What about multi-threaded access?

▪ Samsung created a new file system to help improve the

performance of flash-based devices

▪ Flash-Friendly File System (F2FS)

F2FS: A Flash-Specific FS

CS 326: Operating Systems 27

▪ For years, file systems have been designed with

spinning disks in mind

▪ These days the reality is much different

▪ SSDs are commonly deployed in server environments

▪ Flash has its own set of considerations:

▪ Erase-before-write

▪ Write amplification

▪ Limited cell life

Motivation

CS 326: Operating Systems 28

▪ Apple recently migrated macOS, iOS, etc. devices to

their new APFS

▪ Has several optimizations/accommodations for flash-

based storage

▪ As mentioned earlier, kyber is the answer on the Linux

side of things

▪ Windows undoubtedly has optimized for SSDs, but of

course development is proprietary

▪ We’re still seeing huge progress being made with CPU

and disk schedulers, even today!

Other Efforts

CS 326: Operating Systems 29

