CS 326: Operating Systems

Booting Up & Processes

Lecture 3

TodayOs Schedule

' Booting the System
| Process Structure
| Process Execution

' The Init System
' fork()

- wait()

1/30/19 CS 326: Operating Systems

Today's Schedule

= Booting the System
= Process Structure
= Process Execution

= The Init System
= forki)

= wait()

1/30/19 CS 326: Operating Systems

Booting Up

When you turn on your computer, it starts the
boot process

Named for Opulling oneself over a fence by one's
bootstrapsO

Or in other words, doing the impossible

Booting is a series of tasks that ultimately get the
operating system running

The first thing you (may) see is the POST

Power-on Self Test

1/30/19 CS 326: Operating Systems

Award Modular BIOS vb.88PG, An Energy Star Ally
Copyright (C) 1984-99, Award Software, Inc.

IMIM/BINZM BIOS V1.3 Wz"§

ain Processor : PENTIUM II 918MHz =P POLLUTION PREVENTER
emory Testing : 13187ZK OK + 18Z24K Shared Memory

Award Plug and Play BIOS Extension v1.H8A
opyright (C) 1999, Award Software, Inc.

BIOS

1/30/19

After initializing the hardware, your basic input -
output system (BIOS) will start iterating through the
disks connected to your machine

When installing a new OS, you may change the
boot order

On a Mac, you can do this by holding down Option
during boot (other machines: F12, DelE)

Once a bootable disk is found, we proceed to the
next boot phase

CS 326: Operating Systems

Master Boot Record

The first 512 bytes on a hard drive contain the
Master Boot Record (MBR)

The MBR has two parts:

Partition table
Partition: segment of a disk

Partition 1: Windows: Partition 2: Linux; etc.

Boot code

Responsible for continuing the boot process

1/30/19 CS 326: Operating Systems

Finding a Bootable Partition

1. The BIOS looks for a
disk partition that ends
with OX55AA

7. Then it moves to
address 0x7C00 and
begins executing the
Instructions there

1/30/19 CS 326: Operating Systems

Hard-Coded Offsets

1/30/19

You might be surprised that these offsets are just
hard-coded into the system

However, the BIOS is not particularly smart

To make it smart would begin to resemble an OS

The hardware should be as simple as possible

Making it smart is very expensive!

The software (OS) does not want to make many
assumptions about the underlying hardware

CS 326: Operating Systems

Continuing the Boot Process

We began executing instructions, so weOre all done
starting the OS, right?

Unfortunately, noE

The first instructions executed are part of the
bootloader

The bootloader is a bit smarter than the BIOS, and
handles the next steps in the boot process

1/30/19 CS 326: Operating Systems 10

Bootloader

The bootloader can understand a variety of file
systems

Invent a new file system? Add support to the
bootloader. No need to modify the hardware ROM

It can also provide a list of operating systems
available in a multi-boot configuration

EANd it can handle larger disks!

The BIOS is limited to a fixed number of partitions and
disk sizes

1/30/19 CS 326: Operating Systems

11

Bootloaders

1/30/19

Linux: grub, grub2,
syslinux

Windows: NTLDR,
BOOTMGR

macOS: BootX
FreeBSD: boot0

CS 326: Operating Systems

/
ny

Microsoft®

Windows

12

Installing a Bootloader

1/30/19

Folks with multi-boot Windows + Linux machines may
have come across some wise advice:

“When multi-booting, always install Linux last!”

This is because the bootloader (often grub) gets
Installed on the disk’'s shared MBR

Grub can boot Linux, Windows, FreeBSD, etc

The Windows bootloader only knows of the
existence of Windows
Installing it last means you have no way to boot Linux!

CS 326: Operating Systems 13

Bootloader Restrictions

You can only have one bootloader per disk
Installing one will overwrite another

Luckily, you can always insert another disk (rescue
CD, USB, etc)

Folks that forgot or didn't set their root password: we
just "insert” the CD .iso into the VM, boot off the
LiveCD, and then change the password there

Forgot root password on a Linux machine? Put its hard
drive in your computer, chroot into it, run passwd

1/30/19 CS 326: Operating Systems

14

EF

Some systems come with an EFI (extensible firmware
Interface) bootloader

EFI has replaced the BIOS on most systems

1tOs 2018, we can make our hardware a little smarter!

With EFI, you can avoid the need to install a
bootloader altogether

But many OS still recommend a bootloader instead
because they are generally more flexible

1/30/19 CS 326: Operating Systems 15

Boot Stages

The bootloader is split into two stages:
Stage 1
Stage 2

(appropriately named!)

Stage 1 contains basic initialization code and is
limited to a fixed size

Stage 2 adds file system support, basic menus, and
can read from the disk

1/30/19 CS 326: Operating Systems

16

Disk Layout

GNU GRUB 2

Locations of boot.img, core.img and the /boot/grub directon

Example 1: An MBR-partitioned hard disk with sector size of 512 or 4096 bytes

/boot/grub/

o
S ok sdal sda3 sda5 sda6
m £ Empty space: NTFS ext4 ext4
= @ 512 byte: sectors 1 to 2047 /boot and / /home
4096 byte: sectors 1 to 255 10-20 GiB as much as required

"#$%&)*+,'--&./0121+&314/"$5-0121-67896:8;<-=&314->17&'67896:8;:9%"=+".&.* /@5

1/30/19 CS 326: Operating Systems 17

https://en.wikipedia.org/wiki/GNU_GRUB

Linux Initial Ramdisk

1/30/19

In Linux, the next stage stage is represented by an
initial ramdisk (initrd)

This contains a lightweight, compressed Linux
system image

The initrd Is mounted in memory and contains a
limited set of tools (called Oearly user spaceO)

This environment (finally!) sets up the OS for use

Hardware initialization, mounting file systems, etc.

CS 326: Operating Systems 18

Finishing the Boot Process

1/30/19

Once the boot process is complete, the very first
process takes over

Process: a running instance of a program

PID 1, also known asinit, takes care of launching the
rest of the OS

System services, startup tasks, etc

Linux: systemd (thatOs what thesystemctl command is
controlling!)

CS 326: Operating Systems 19

TodayOs Schedule

1/30/19

' Booting the System
| Process Structure
| Process Execution

' The Init System
' fork()

| wait()

CS 326: Operating Systems

20

From Program to Process

1/30/19

When a program is executed, the OS reads its static
data from the disk and copies it into main memory

Program instructions, string literals, binary data
A process ID (PID) is assigned
Space is allocated for the stack and heap

File descriptors are initialized

stdout , stderr , stdin

Run-time permissions are applied

CS 326: Operating Systems

21

Process Memory Layout

1/30/19

Memory Allocation

Stack

l Growth A Read & Write

Static Data

Literals Read-Only

Instructions

CS 326: Operating Systems 22

Virtual Memory

1/30/19

Processes are given a zeroed out virtual address
space rather than accessing main memory directly

Prevents viewing/changing other process data
Makes memory allocation and management simpler

A page table lets the OS allocate blocks of non -
contiguous memory on demand

The memory management unit (MMU) handles
translating virtual " physical addresses
Supported by most CPUs

CS 326: Operating Systems

23

Communication

1/30/19

While processes arenOt allowed to manipulate

memory directly, they can create pools of shared
memory for communication

However, there are often simpler methods to
communicate:

Signals, sockets, pipes, or even files

Higher-level inter-process communication (IPC)
frameworks allow event -based messaging and
remote procedure calls

CS 326: Operating Systems 24

Inspecting the System

1/30/19

Processes are limited to virtualized views of the
hardware, but they are still able to inspect it

Memory, CPU, disk availability and usage
Other process names and command lines
Logged in users

Hardware specs, serial numbers, etc.

This is good , especially in shared environments !

CS 326: Operating Systems

25

Inspecting the System

[ma! ensek@ruby:~]$ w

23:11: "6 up 1 day, 7:57, 11 users,
USER TTY LOGIN@ IDLE
ma pts/ " "7:16 14:37m
zoe pts/1 2": "4 3:"6m
wash pts/2 23. "™ 4:57
$nara pts/3 21:52 1:"8m
jayne pts/4 231" 12. ™ s
ma ensek pts/5 23:11 "."™'s

| oad avera #e:16. "7,15.17,11.34

JCPU

R AS
A43s
."9s
.82s
."3s
d"s

PCPU WHAT

."7s -bash

38sv $moutput/f $!e-"
."5sv $m Makef $! e

.79s /usr/b $n/python2
."3s -bash

t4Asw

1/30/19 CS 326: Operating Systems 26

TodayOs Schedule

1/30/19

' Booting the System
| Process Structure
| Process Execution

' The Init System
' fork()

| wait()

CS 326: Operating Systems

27

Basic Unit of Execution: Process

1/30/19

The process is one of the most fundamental parts of
any operating system
A running instance of a program

In the early days, only one process could run at once

After all, we only have one CPU, right?

Multitasking challenged this idea: why not let
multiple processes share the CPU?

CS 326: Operating Systems

28

Multitasking

1/30/19

In early multitasking systems, processes were
responsible for yielding control of the CPU to others

Once you are given control of the CPU, you can do
whatever you want!

As you can imagine, no process wanted to give up
control of the CPU

Buggy processes can also take control of the CPU
and never give it up

CS 326: Operating Systems 29

CPU Virtualization

Putting processes in control was messy and error
pronekE not to mention complicated!

A better approach turned out to be virtualizing the

CPU

Making each process think it has exclusive control
over its very own CPU

This led to preemptive multitasking

Processes can be preempted bswapped out at will by
the OS

1/30/19 CS 326: Operating Systems 30

Concurrent Tasks

1/30/19

LetOs assume you want to listen to music and work on
your CS 326 homework

If you only have a single core, you need to switch
between these two tasks quickly

Switch too slow, and your music will skip

Switch quickly enough, and the user will think things
are all happening at the same time!

Hundreds of processes run per second

CS 326: Operating Systems

31

Multitasking

"#B00&" ()% +,+'-."[+0& " *+ +'-" %+ %6 &
1"23+B&'$8678'&+M/6+%8.."&9& KRR 678'&+4
"#$%08" () %B& ' $&678'&+4+08B& ' $&E78'&+Mo+%8&,
1"23+4%+%'-9 [%+%&." 89& (H&"9

"4$%&" () %+%'-9."+0&"+%6'-9 [%+%&
1"23+4"0-"/%+%&."89&:(%&"0-:

"#$%8." ()%"0-:."[+0&"0-:"1%+%&
1"23+B&'$8678'&+M/6+%8.."&9& KRR 678'&+4
"#$%08" () B8 $&678'&+A+08B& ' $&E78'&+M/o+%&
1"23+4"+ +'-"[%+%&

"HB00&" ()% +,+'-."[+0& " *+ +'-" %+ %6 &

<

1/30/19 CS 326: Operating Systems

32

State Information

The previous example introduced some new terms:
State information
Interrupts

State information is stored in

Process Control Blocks (PCBSs)

This includes, variables, call stack, heap, etc.
Only one active PCB per CPU

As a program runs, the OS may interrupt it to pause
Its execution

1/30/19 CS 326: Operating Systems

33

Anatomy: Process Control Block

Process Control Block

Executable
Machine Code

Memory

Metadata

Context

1/30/19

(Isolated from other processes)

« (Call Stack
 Heap

 Permissions, ownership
* Isolate file access

/ « Environment Variables

* Register States
« Stack pointer, program counter
« Memory Addressing

CS 326: Operating Systems

34

The Scheduler

1/30/19

The OSscheduler is responsible for ensuring each
process gets a share of the CPU

Rather than letting processes coordinate this, the
scheduler preempts them
Context switch
Each process can pretend it owns the CPU
When a process is waiting for an I/O device, it gets
switched out until the operation completes
Interleaves I/O and CPU usage

Different scheduling algorithms have different
performance properties

CS 326: Operating Systems 35

Basic State Transitions

Blocked

1/30/19 CS 326: Operating Systems

36

TodayOs Schedule

1/30/19

' Booting the System
| Process Structure
| Process Execution

' The Init System
' fork()

| wait()

CS 326: Operating Systems

37

The First Process: PID 1

The very first process in a UNIX-like OS is called init

Direct or indirect ancestor of all other processes

Init Iis responsible for starting services, launching
applications, rebooting/shutting down the system

Specific init implementation can do more or less:

System V Init, systemd , upstart, launchd, etc.

You can even write your own!

Boot Linux with flag: ! n! t =/path/to/your/ I nl't

1/30/19 CS 326: Operating Systems 38

Linux: Init/main.c

/! We try each of these unt "# one succeeds.
I The Bourne she ## can be used " nstead of "n"t "fwe are
I try "n$ torecover area ##y broken mach "ne. !/

"f (execute_command) %

ret= run_"n"t process (execute_command);
"t (Iret)
return &
pan" c("Requested "n"t %s fa "# ed (error %0." , execute_command |, ret);

"f (! try torun_ "n"t process ("/ sb"n/"n"t")]|
I'try to run_ "n"t process ("/ etc/"n"t")]||
I'try to run_ "n"t process ("/b "n/"n"t")||
I'try to run_ "n"t process ("/b "n/sh"))
return &;
pan"c("Nowork "n$ "n"t found. Trypass "n$ "n"t=opt "ontokerne

"See L "nux Documentat " on/adm " n-$u"de/ " n"t.rst for $u"dance.");

1/30/19 CS 326: Operating Systems

39

Process Lineage

[mad ensek @uby :~]$ ps -ef

uiD PID PPID CSTIMETTY TIME CMD

root 1 " " Feb21 ? "™ 57 Jusr/ I# b/systemd/systemd
root 2 " " Feb21 7 e [kthreadd]

root 3 2 " Feb21 ? oo Jksoft #rqd/ M

root 5 2 " Feb21 7 oo [kworker/ MM HJ
root 7 2 " Feb21 7 " " 1:21 [rcu_sched]

root 8 2 " Feb21 7 oM™ Jreu_bh]

root 9 2 " Feb21 7 "™ 13 [reuos/ "1

root 1" 2 " Feb21 ? mtomo™ Jrcuob/ U]

root 11 2 " Feb21 7 oo™ Im #$rat #on/ M

root 12 2 " Feb21 ? et [ru - add- dra #n)
root 13 2 " Feb21 7 oo™ o1 [watchdo $/ "]

ma ensek 235 1 " Feb21 ttyl oo™ lo$#n -- md ensek
ma ensek 282 235 " Feb21 ttyl o™ ™ pash

1/30/19 CS 326: Operating Systems 40

Init Responsibilities

1/30/19

Some init systems may do more than others, but at a
basic level they are responsible for one key task:

Launching other processes

When one process launches another, it is that
processOsparent

The newly-launched process is the child

Unfortunately there are no uncle or aunt processesE

CS 326: Operating Systems

41

Creating Processes

1/30/19

On Unix systems, we create processes with the fork
system call

Fork creates a duplicate (clone) of a running process

Once the call to fork() is complete, the two processes
run independently, moving on to the next instruction

We can distinguish between the parent and child
using the return value of the fork call

Child: zero: Parent: non-zero

Demo time

CS 326: Operating Systems

42

