
Lecture 3

CS 326: Operating Systems

Booting Up & Processes

! Booting the System

! Process Structure

! Process Execution

! The Init System

! fork()

! wait()

TodayÕs Schedule

1/30/19 CS 326: Operating Systems 2

§ Booting the System
§ Process Structure
§ Process Execution
§ The Init System

§ fork()
§ wait()

Today’s Schedule

1/30/19 CS 326: Operating Systems 3

! When you turn on your computer, it starts the
boot process

! Named for Òpulling oneself over a fence by one's

bootstrapsÓ

! Or in other words, doing the impossible

! Booting is a series of tasks that ultimately get the
operating system running

! The first thing you (may) see is the POST

! Power-on Self Test

Booting Up

1/30/19 CS 326: Operating Systems 4

1/30/19 CS 326: Operating Systems 5

! After initializing the hardware, your basic input -
output system (BIOS) will start iterating through the
disks connected to your machine

! When installing a new OS, you may change the

boot order

! On a Mac, you can do this by holding down Option

during boot (other machines: F12, DelÉ)

! Once a bootable disk is found, we proceed to the
next boot phase

BIOS

1/30/19 CS 326: Operating Systems 6

! The first 512 bytes on a hard drive contain the
Master Boot Record (MBR)

! The MBR has two parts:

! Partition table

! Partition: segment of a disk

! Partition 1: Windows; Partition 2: Linux; etc.

! Boot code

! Responsible for continuing the boot process

Master Boot Record

1/30/19 CS 326: Operating Systems 7

1. The BIOS looks for a
disk partition that ends
with 0x55AA

2. Then it moves to
address 0x7C00 and
begins executing the
instructions there

Finding a Bootable Partition

1/30/19 CS 326: Operating Systems 8

! You might be surprised that these offsets are just
hard-coded into the system

! However, the BIOS is not particularly smart

! To make it smart would begin to resemble an OS

! The hardware should be as simple as possible

! Making it smart is very expensive!

! The software (OS) does not want to make many
assumptions about the underlying hardware

Hard-Coded Offsets

1/30/19 CS 326: Operating Systems 9

! We began executing instructions, so weÕre all done
starting the OS, right?

! Unfortunately, noÉ

! The first instructions executed are part of the
bootloader

! The bootloader is a bit smarter than the BIOS, and

handles the next steps in the boot process

Continuing the Boot Process

1/30/19 CS 326: Operating Systems 10

! The bootloader can understand a variety of file
systems

! Invent a new file system? Add support to the

bootloader. No need to modify the hardware ROM

! It can also provide a list of operating systems
available in a multi-boot configuration

! ÉAnd it can handle larger disks!

! The BIOS is limited to a fixed number of partitions and

disk sizes

Bootloader

1/30/19 CS 326: Operating Systems 11

! Linux: grub, grub2,
syslinux

! Windows: NTLDR,
BOOTMGR

! macOS: BootX

! FreeBSD: boot0

Bootloaders

1/30/19 CS 326: Operating Systems 12

§ Folks with multi-boot Windows + Linux machines may
have come across some wise advice:
§ “When multi-booting, always install Linux last!”

§ This is because the bootloader (often grub) gets
installed on the disk’s shared MBR
§ Grub can boot Linux, Windows, FreeBSD, etc

§ The Windows bootloader only knows of the
existence of Windows
§ Installing it last means you have no way to boot Linux!

Installing a Bootloader

1/30/19 CS 326: Operating Systems 13

§ You can only have one bootloader per disk
§ Installing one will overwrite another
§ Luckily, you can always insert another disk (rescue

CD, USB, etc)
§ Folks that forgot or didn’t set their root password: we

just ”insert” the CD .iso into the VM, boot off the
LiveCD, and then change the password there
§ Forgot root password on a Linux machine? Put its hard

drive in your computer, chroot into it, run passwd

Bootloader Restrictions

1/30/19 CS 326: Operating Systems 14

! Some systems come with an EFI (extensible firmware
interface) bootloader

! EFI has replaced the BIOS on most systems

! ItÕs 2018, we can make our hardware a little smarter!

! With EFI, you can avoid the need to install a
bootloader altogether

! But many OS still recommend a bootloader instead

because they are generally more flexible

EFI

1/30/19 CS 326: Operating Systems 15

! The bootloader is split into two stages:

! Stage 1

! Stage 2

! (appropriately named!)

! Stage 1 contains basic initialization code and is
limited to a fixed size

! Stage 2 adds file system support, basic menus, and
can read from the disk

Boot Stages

1/30/19 CS 326: Operating Systems 16

Disk Layout

1/30/19 CS 326: Operating Systems 17

!"#$%&'()**+,'--&./0121+&314/"$5-0121-67896:8;<-=&314->1?&'67896:8;9%"=+".&.*,/,@5

https://en.wikipedia.org/wiki/GNU_GRUB

! In Linux, the next stage stage is represented by an
initial ramdisk (initrd)

! This contains a lightweight, compressed Linux
system image

! The initrd is mounted in memory and contains a
limited set of tools (called Òearly user spaceÓ)

! This environment (finally!) sets up the OS for use

! Hardware initialization, mounting file systems, etc.

Linux Initial Ramdisk

1/30/19 CS 326: Operating Systems 18

! Once the boot process is complete, the very first
process takes over

! Process: a running instance of a program

! PID 1, also known as init , takes care of launching the
rest of the OS

! System services, startup tasks, etc

! Linux: systemd (thatÕs what the systemctl command is

controlling!)

Finishing the Boot Process

1/30/19 CS 326: Operating Systems 19

! Booting the System

! Process Structure

! Process Execution

! The Init System

! fork()

! wait()

TodayÕs Schedule

1/30/19 CS 326: Operating Systems 20

! When a program is executed, the OS reads its static
data from the disk and copies it into main memory

! Program instructions, string literals, binary data

! A process ID (PID) is assigned

! Space is allocated for the stack and heap

! File descriptors are initialized

! stdout , stderr , stdin

! Run-time permissions are applied

From Program to Process

1/30/19 CS 326: Operating Systems 21

Process Memory Layout

1/30/19 CS 326: Operating Systems 22

! Processes are given a zeroed out virtual address
space rather than accessing main memory directly

! Prevents viewing/changing other process data

! Makes memory allocation and management simpler

! A page table lets the OS allocate blocks of non -
contiguous memory on demand

! The memory management unit (MMU) handles
translating virtual " physical addresses

! Supported by most CPUs

Virtual Memory

1/30/19 CS 326: Operating Systems 23

! While processes arenÕt allowed to manipulate
memory directly, they can create pools of shared
memory for communication

! However, there are often simpler methods to
communicate:

! Signals, sockets, pipes, or even files

! Higher-level inter -process communication (IPC)
frameworks allow event -based messaging and
remote procedure calls

Communication

1/30/19 CS 326: Operating Systems 24

! Processes are limited to virtualized views of the
hardware, but they are still able to inspect it

! Memory, CPU, disk availability and usage

! Other process names and command lines

! Logged in users

! Hardware specs, serial numbers, etc.

! This is good , especially in shared environments !

Inspecting the System

1/30/19 CS 326: Operating Systems 25

[ma ! ensek@ruby:~]$ w

23:11: " 6 up 1 day, 7:57, 11 users, ! oad avera #e: 16. " 7, 15.17, 11.34
USER TTY LOGIN@ IDLE JCPU PCPU WHAT

ma! pts/ " " 7:16 14:37m " . " 7s " . " 7s - bash
zoe pts/1 2" : " 4 3: " 6m " .43s " .38s v $m output/f $! e- "

wash pts/2 23: "" 4:57 " . " 9s " . " 5s v $m Makef $! e

$nara pts/3 21:52 1: " 8m " .82s " .79s /usr/b $n/python2
jayne pts/4 23:1 " 12. "" s " . " 3s " . " 3s - bash

ma! ensek pts/5 23:11 " . "" s " .1 " s " . " 4s w

Inspecting the System

1/30/19 CS 326: Operating Systems 26

! Booting the System

! Process Structure

! Process Execution

! The Init System

! fork()

! wait()

TodayÕs Schedule

1/30/19 CS 326: Operating Systems 27

! The process is one of the most fundamental parts of
any operating system

! A running instance of a program

! In the early days, only one process could run at once

! After all, we only have one CPU, right?

! Multitasking challenged this idea: why not let
multiple processes share the CPU?

Basic Unit of Execution: Process

1/30/19 CS 326: Operating Systems 28

! In early multitasking systems, processes were
responsible for yielding control of the CPU to others

! Once you are given control of the CPU, you can do
whatever you want!

! As you can imagine, no process wanted to give up
control of the CPU

! Buggy processes can also take control of the CPU
and never give it up

Multitasking

1/30/19 CS 326: Operating Systems 29

! Putting processes in control was messy and error
proneÉ not to mention complicated!

! A better approach turned out to be virtualizing the
CPU

! Making each process think it has exclusive control

over its very own CPU

! This led to preemptive multitasking

! Processes can be preempted Ðswapped out at will by

the OS

CPU Virtualization

1/30/19 CS 326: Operating Systems 30

! LetÕs assume you want to listen to music and work on
your CS 326 homework

! If you only have a single core, you need to switch
between these two tasks quickly

! Switch too slow, and your music will skip

! Switch quickly enough, and the user will think things
are all happening at the same time!

! Hundreds of processes run per second

Concurrent Tasks

1/30/19 CS 326: Operating Systems 31

Multitasking

1/30/19 CS 326: Operating Systems 32

!"#$%&''()%"*+,+'-."/+0&"*+,+'-"/%+%&
1"23+4"5&'$&678'&+4/%+%&."&9&:(%&"5&'$&678'&+4
!"#$%&''()%"5&'$&678'&+4."/+0&"5&'$&678'&+4/%+%&
1"23+4":;+%'-9 /%+%&."&9&:(%&":;+%'-9
!"#$%&''()%":;+%'-9."/+0&":;+%'-9 /%+%&
1"23+4"0-;"/%+%&."&9&:(%&"0-;
!"#$%&''()%"0-;."/+0&"0-;"/%+%&
1"23+4"5&'$&678'&+4/%+%&."&9&:(%&"5&'$&678'&+4
!"#$%&''()%"5&'$&678'&+4."/+0&"5&'$&678'&+4/%+%&
1"23+4"*+,+'-"/%+%&
!"#$%&''()%"*+,+'-."/+0&"*+,+'-"/%+%&

<

§ The previous example introduced some new terms:
§ State information
§ Interrupts

§ State information is stored in
Process Control Blocks (PCBs)

§ This includes, variables, call stack, heap, etc.
§ Only one active PCB per CPU

§ As a program runs, the OS may interrupt it to pause
its execution

State Information

1/30/19 CS 326: Operating Systems 33

Anatomy: Process Control Block

1/30/19 CS 326: Operating Systems 34

• Register States
• Stack pointer, program counter
• Memory Addressing

• Permissions, ownership
• Isolate file access

• Environment Variables

(Isolated from other processes)
• Call Stack
• Heap

! The OS scheduler is responsible for ensuring each
process gets a share of the CPU

! Rather than letting processes coordinate this, the
scheduler preempts them

! Context switch

! Each process can pretend it owns the CPU

! When a process is waiting for an I/O device, it gets
switched out until the operation completes

! Interleaves I/O and CPU usage

! Different scheduling algorithms have different
performance properties

The Scheduler

1/30/19 CS 326: Operating Systems 35

Basic State Transitions

1/30/19 CS 326: Operating Systems 36

! Booting the System

! Process Structure

! Process Execution

! The Init System
! fork()

! wait()

TodayÕs Schedule

1/30/19 CS 326: Operating Systems 37

! The very first process in a UNIX-like OS is called init

! Direct or indirect ancestor of all other processes

! Init is responsible for starting services, launching
applications, rebooting/shutting down the system

! Specific init implementation can do more or less:

! System V Init, systemd , upstart, launchd , etc.

! You can even write your own!

! Boot Linux with flag: ! n! t =/path/to/your/ ! n! t

The First Process: PID 1

1/30/19 CS 326: Operating Systems 38

/ ! We try each of these unt "# one succeeds.
! The Bourne she ## can be used " nstead of " n" t " f we are
! try " n$ to recover a rea ##y broken mach " ne. ! /

" f (execute_command) %
ret = run_ " n" t_process (execute_command);
" f (!ret)

return &;
pan" c("Requested " n" t %s fa "# ed (error %d)." , execute_command , ret);

'

" f (! try_to_run_ " n" t_process ("/ sb " n/ " n" t ") ||
! try_to_run_ " n" t_process ("/ etc / " n" t ") ||
! try_to_run_ " n" t_process ("/b " n/ " n" t ") ||
! try_to_run_ " n" t_process ("/b " n/ sh "))

return &;

pan" c("No work " n$ " n" t found. Try pass " n$ " n" t = opt " on to kerne #. "
"See L " nux Documentat " on/adm " n- $u" de/ " n" t.rst for $u" dance.");

Linux: init /main.c

1/30/19 CS 326: Operating Systems 39

[ma! ensek @ruby :~]$ ps - ef

UID PID PPID C STIME TTY TIME CMD
root 1 " " Feb21 ? "" : "" :57 /usr/ !# b/systemd/systemd
root 2 " " Feb21 ? "" : "" : "" [kthreadd]
root 3 2 " Feb21 ? "" : "" : "" [ksoft #rqd/ "]
root 5 2 " Feb21 ? "" : "" : "" [kworker/ " : " H]
root 7 2 " Feb21 ? "" : " 1:21 [rcu_sched]
root 8 2 " Feb21 ? "" : "" : "" [rcu_bh]
root 9 2 " Feb21 ? "" : "" :13 [rcuos/ "]
root 1" 2 " Feb21 ? "" : "" : "" [rcuob/ "]
root 11 2 " Feb21 ? "" : "" : "" [m #$rat #on/ "]
root 12 2 " Feb21 ? "" : "" : "" [! ru - add - dra #n]
root 13 2 " Feb21 ? "" : "" : " 1 [watchdo $/ "]

...

ma! ensek 235 1 " Feb21 tty1 "" : "" : "" ! o$#n -- ma! ensek
ma! ensek 282 235 " Feb21 tty1 "" : "" : "" bash

Process Lineage

1/30/19 CS 326: Operating Systems 40

! Some init systems may do more than others, but at a
basic level they are responsible for one key task:

! Launching other processes

! When one process launches another, it is that
processÕs parent

! The newly-launched process is the child

! Unfortunately there are no uncle or aunt processesÉ

Init Responsibilities

1/30/19 CS 326: Operating Systems 41

§ On Unix systems, we create processes with the fork
system call

§ Fork creates a duplicate (clone) of a running process
§ Once the call to fork() is complete, the two processes

run independently, moving on to the next instruction
§ We can distinguish between the parent and child

using the return value of the fork call
§ Child: zero; Parent: non-zero

§ Demo time

Creating Processes

1/30/19 CS 326: Operating Systems 42

