
Pointers and Arrays

CS 521: Systems Programming

Lecture 3

▪ Pointers

▪ Argument Passing Conventions

▪ Arrays

Today’s Schedule

CS 521: Systems Programming 2

▪ Pointers

▪ Argument Passing Conventions

▪ Arrays

Today’s Schedule

CS 521: Systems Programming 3

▪ In C, function arguments are passed by value

▪ NOT pass by reference

▪ This means that changes to the argument inside the

function are not reflected outside the function

▪ When you call a function, like: location(2, 4);

▪ Copies will be made of 2 and 4 and passed to

location()

▪ Sometimes we actually do want to change the value of a

variable when it’s passed into a function, though…

Passing by Value

CS 521: Systems Programming 4

Here’s what a swap function should produce, but it doesn’t

seem possible if a and b are just copies:

int a = 3;
int b = 8;
printf("%d, %d\n", a, b);
swap(a, b);
printf("%d, %d\n", a, b);

Output:

3, 8
8, 3

Passing by Reference [1/2]

CS 521: Systems Programming 5

▪ If you want to make outside changes to a variable

passed to a function, then you must use pointers

▪ Pointers are a special type of integer that hold a

memory address

▪ They are still passed by value; the value is the memory

address

▪ However, we can use the memory address to access

a variable defined outside a function

Passing by Reference [2/2]

CS 521: Systems Programming 6

▪ int *x; – defines a pointer. Note that this doesn’t create an

integer, it creates a pointer to an integer.

▪ To make life a little easier, focus on the fact that it’s a pointer.

Don’t worry about its data type for now.

▪ & – ‘address of’ operator. &a returns a pointer to a .

▪ When a function takes a pointer as an argument, you need to

give it an address

▪ After passing the value of the pointer (memory address), we

can dereference it (* operator) to retrieve/change the data it

points to:

▪ *x = 45;

Pointer Syntax

CS 521: Systems Programming 7

Demo: Writing swap()

CS 521: Systems Programming 8

▪ Pointers

▪ Argument Passing Conventions

▪ Arrays

Today’s Schedule

CS 521: Systems Programming 9

Functions are defined in C like this:

<return type> <function name>(<argument list>)
{
 ...
}

▪ If the function does not return a value, the return type should be

void

▪ If there are no arguments, then the argument list is void (not

required)

▪ Let’s dig a bit deeper into this…

Defining a Function

CS 521: Systems Programming 10

▪ Coming from the Java or Python world, we’re used to

passing inputs to our functions

▪ The result (output) of the function is usually given to us

in the return value

▪ In Python you can even return a tuple. Nice!

▪ This is not the case with C.

▪ In many cases, both the function inputs and outputs

are passed in as arguments

▪ The return value is used for error handling

Argument Conventions [1/2]

CS 521: Systems Programming 11

Here’s an example:

/* Here's a function that increments an integer. */
void add_one(int *i)
{
 *i = *i + 1;
}

int a = 6;
add_one(&a); /* a is now 7 */

Argument Conventions [2/2]

CS 521: Systems Programming 12

▪ In C, some of the function arguments serve as outputs

▪ Or in the example we just saw, the function argument is

both an input and an output!

▪ Some API designers even label these arguments as “in”

or “out” args (example from the Windows API):

BOOL WINAPI FindNextFile(
 In HANDLE hFindFile,
 Out LPWIN32_FIND_DATA lpFindFileData
);

“In/Out” Arguments

CS 521: Systems Programming 13

▪ Reason 1: C does not have exceptions

▪ Problem in a Java/Python function? Throw an

exception!

▪ Exceptions are a bit controversial among

programming language designers

▪ In C, the return value of functions often indicates

success or failure, called a status code

▪ Functions don’t have to be designed this way, but it’s a

very common convention

That’s Weird… Why?!

CS 521: Systems Programming 14

▪ Reason 2: Speed!

▪ Return values have to be copied back to the calling

function

▪ Say my function returns a bitmap image. The entire

thing is going to get copied!

▪ In a language that focuses on speed and efficiency,

updating the values directly in memory is faster

▪ Imagine transferring lots of large strings, objects, etc.

around your program, copying them the whole time

Efficiency

CS 521: Systems Programming 15

▪ The return value might indicate a status code… and it

might not.

▪ To be sure, use the man (manual) pages

▪ (You could also google it, but that can occasionally

lead you to the wrong documentation / advice)

▪ The C documentation is in section 3 of the man pages:

▪ man 3 printf

▪ Each man page will explain how the arguments and

return values are used

Arguments/Return Values: How to Know?

CS 521: Systems Programming 16

▪ Many C functions return a status code and set errno

▪ Global variable that contains the last error number

▪ You can use the perror() function to convert this

number into plain English (or your local language)

▪ Pass in a string prefix to help you trace your code:

▪ Call perror("open"); after open(...) function call

▪ Result: open: No such file or directory

▪ (assuming the file being opened didn’t actually

exist)

Error Messages

CS 521: Systems Programming 17

▪ In C, there’s a difference between function() and

function(void)

▪ void arg: the function takes no arguments

▪ Empty arg list: the function may or may not take

arguments

▪ If it does, they can be of any type and there can be

any number of them

void Argument [1/3]

CS 521: Systems Programming 18

▪ Why is this important?

▪ First, to understand older code

▪ From the C11 standard:

▪ “The use of function declarators with empty

parentheses (not prototype-format parameter type

declarators) is an obsolescent feature.”

▪ Second, this may lead to incorrect function prototypes

or passing incorrect args in your code

void Argument [2/3]

CS 521: Systems Programming 19

So, to sum up:

/* Takes an unspecified number of args: */
void function();

And:

/* Takes no args: */
void function(void);

void Argument [3/3]

CS 521: Systems Programming 20

▪ Pointers

▪ Argument Passing Conventions

▪ Arrays

Today’s Schedule

CS 521: Systems Programming 21

▪ In C, arrays let us store a collection of values of the

same type

▪ int list[10];

▪ double dlist[15];

▪ Internally, they are represented as a chunk of memory

large enough to fit all the required elements

▪ Note that the arrays must be dimensioned when they’re

declared

▪ In older versions of C the dimension had to be a

constant

Arrays

CS 521: Systems Programming 22

▪ Setting/retrieving the values of an array is the same as it

is in Java:

▪ list[2] = 7;

▪ list[1] = list[2] + 3;

▪ However, one interesting note about C is there is no

boundary checking, so:

▪ list[500] = 7;

▪ …may work just fine.

▪

Accessing Array Elements

CS 521: Systems Programming 23

▪ We can try modifying out-of-bounds array elements

▪ see: array_break.c

▪ We can even do it in a loop to test the limits

▪ Different operating systems / architectures may react

differently

▪ Let’s try it now. Open your editor, create an array, and write a

loop that iterates beyond its boundaries.

▪ When does it segfault? How big was your initial array?

▪ At this point, you might be wondering:

▪ What is wrong with C?!

▪ What is the meaning of life?

Experiment: When will it Break?

CS 521: Systems Programming 24

▪ So we can do things like this in C:

▪ int list[5];

▪ list[10] = 7;

▪ Your program may work fine… or crash!

▪ It’s never a good idea to do this

▪ So why does C let us do it anyway?

Out-of-bounds Access

CS 521: Systems Programming 25

▪ C favors performance over safety

▪ Compare: C program vs Python equivalent

▪ Helpful: time command

▪ Especially in the glory days of C, adding lots of extra

checks meant poor performance

▪ Additional instructions for those checks

▪ If you don’t want/need them, then the language

shouldn’t force it on you!

▪ This can lead to dangerous bugs

Safety vs. Performance

CS 521: Systems Programming 26

▪ Let’s create our list of integers:

▪ int list[10];

▪ When we do this, C sets aside a place in memory for the

array

▪ It doesn’t clear the memory unless we ask it to

▪ Another common cause of subtle bugs

▪ Creating a list of integers initialized to zero:

▪ int list[10] = { 0 };

Initializing an Array [1/2]

CS 521: Systems Programming 27

Thus far we’ve always specified the array size. There is a

shorthand for doing this if you already know the contents

of the array:

// Will auto-size to 5:
int nums[] = { 1, 82, 9, -3, 26 };

Here, the compiler will fill in the size for you.

Initializing an Array [2/2]

CS 521: Systems Programming 28

▪ What happens when we retrieve the value of list[5] ?

▪ Find the location of list in memory

▪ Move to the proper offset: 5 * 4 = byte 20

▪ Assuming sizeof(int) = 4

▪ Access the value

▪ Accessing, say, list[500] is just moving to a position

in memory and retrieving whatever is there

Memory Access

CS 521: Systems Programming 29

/* Note: calculating the array
 * dimensions automatically! */

int list[] = {
 1,
 2,
 15,
 2001
};

sizeof(int) = 4

▪ Note how the visualization represents the

integers in hexadecimal

Visualizing Arrays in Memory

CS 521: Systems Programming 30

▪ We can use the sizeof operator in C to determine how

big things are

▪ Somewhat like:

▪ len() in python

▪ .length in Java, or

▪ .size() in Java

▪ Much more low-level

▪ size_t sz = sizeof(int);

▪ printf("%zd\n", sz); // Prints 4 (on my machine)

The sizeof Operator

CS 521: Systems Programming 31

▪ Let’s try this out:

▪ int list[10];

▪ size_t list_sz = sizeof(list);

▪ Any guesses on the output?

▪ (pause for everyone to yell out guesses)

▪ On my machine, it’s 40:

▪ 40 bytes (10 integers at 4 bytes each)

▪ This can be different depending on architecture

▪ In C, sizeof(char) is guaranteed to be 1.

Array Size [1/2]

CS 521: Systems Programming 32

▪ Knowing the number of bytes in the array can be useful,

but not that useful

▪ Usually we want to know how many elements there are

in an array

▪ To do this, we’ll divide by the array type (int - 4 bytes):

▪ int list[10];

▪ size_t list_sz = sizeof(list) / sizeof(list[0]);

▪ printf("%zd\n", list_sz); /* 10 (for me) */

Array Size [2/2]

CS 521: Systems Programming 33

▪ Arrays in C are actually (constant) pointers

▪ int list[5];

▪ list is the same as &list[0];

▪ You can’t change what they point at, but otherwise they

work the same

▪ So accessing list[2] is really just dereferencing a

pointer that points two memory addresses from the

start of the array

▪ …one reason we have 0-based arrays

Behind the Scenes

CS 521: Systems Programming 34

▪ Since arrays are just constant pointers, we have another

way to access them:

▪ list[5] is the same thing as: *(list + 5)

▪ Workflow:

1. Locate the start of the array

2. Move up 5 memory locations (4 bytes each*)

3. Dereference the pointer to get our value

We can make this more “fun…”

CS 521: Systems Programming 35

▪ Manipulating pointers in this way is called pointer

arithmetic

▪ arr[i]; is the same thing as: *(arr + i);

▪ arr[6] = 42; is the same as *(arr + 6) = 42;

Pointer Arithmetic

CS 521: Systems Programming 36

int list[] = {
 1,
 2,
 15,
 2001
};

sizeof(int) = 4

Visualizing Arrays with Pointer Arithmetic

CS 521: Systems Programming 37

▪ In general, stick with using regular array syntax

▪ You may see pointer arithmetic in production code, but

it should only be used in situations that make the code

more understandable

▪ Haphazardly showing off your knowledge of pointer

arithmetic is a recipe for confusing code

A Note on Pointer Arithmetic

CS 521: Systems Programming 38

▪ When we pass an array to a function, its pointer-based

underpinnings begin to show

▪ If we modify an array element inside a function, will the

change be reflected in the calling function?

▪ …

▪ …why?

▪ In fact, when an array is passed to a function it decays

to a pointer

▪ The function just receives a pointer to the first

element in the array. That’s it!

Arrays as Function Arguments

CS 521: Systems Programming 39

▪ When an array decays to a pointer, we lose its

dimension information

▪ Let’s imagine someone just gives us a pointer

▪ Do we know if it points to a single value?

▪ Is it the start of an array?

▪ Functions are in the same situation: they don’t know

where this pointer came from or where it’s been

▪ sizeof() doesn’t work as expected

Array Decay

CS 521: Systems Programming 40

▪ Array dimensions are often very useful information!

▪ If we don’t know how many elements are in the array,

then we could read/write beyond the end of it

▪ There are two viable strategies to deal with this:

1. Pass the size of the array into the function as an

argument

2. Put some kind of identifier at the end of the array so

we know where it ends as we iterate through

▪ (this is the way strings work!)

Dealing with Decay

CS 521: Systems Programming 41

▪ Lab 2 will give you a chance to work with pointers

▪ We’ll create a reciprocal cipher function that takes

characters and rotates them to “encrypt” strings

▪ Let’s set this up and then take a tour of the code

▪ (clone the repo and then continue on for info about

Makefiles)

Lab 2

CS 521: Systems Programming 42

▪ All 521 projects will include a Makefile

▪ This tells the make utility what to do

▪ Essentially just a recipe for building your program

▪ All our projects are composed of several C files

▪ Hints (applies to Lab 3 as well):

▪ make – compile and produce executable

▪ make test – run the test cases

▪ make clean – clean up all build artifacts

Make

CS 521: Systems Programming 43

Makefiles are a recipe composed of instructions like this:

target: dependency
 instructions

(Note the tabs)

▪ You provide a target, like ‘array’ – the name of the file that gcc

will generate

▪ The dependency tells us what files you need to build your

program. In this case, it’s ‘array.c’

How make Works

CS 521: Systems Programming 44

Time to start working on the lab.

Let’s go!

CS 521: Systems Programming 45

