
Pointers

CS 521: Systems Programming

Lecture 6



▪ Pointers

▪ Argument Passing Conventions

Today’s Schedule

CS 521: Systems Programming 2



▪ Pointers

▪ Argument Passing Conventions

Today’s Schedule

CS 521: Systems Programming 3



▪ In C, function arguments are passed by value

▪ NOT pass by reference

▪ This means that changes to the argument inside the

function are not reflected outside the function

▪ When you call a function, like: location(2, 4);

▪ Copies will be made of 2  and 4  and passed to

location()

▪ Sometimes we actually do want to change the value of a

variable when it’s passed into a function, though…

Passing by Value

CS 521: Systems Programming 4



Here’s what a swap function should produce, but it doesn’t

seem possible if a  and b  are just copies:

int a = 3;               
int b = 8;               
printf("%d, %d\n", a, b);
swap(a, b);             
printf("%d, %d\n", a, b);

Output:

3, 8
8, 3

Passing by Reference [1/2]

CS 521: Systems Programming 5



▪ If you want to make outside changes to a variable

passed to a function, then you must use pointers

▪ Pointers are a special type of integer that hold a

memory address

▪ They are still passed by value; the value is the memory

address

▪ However, we can use the memory address to access

a variable defined outside a function

Passing by Reference [2/2]

CS 521: Systems Programming 6



▪ int *x;  – defines a pointer. Note that this doesn’t create an

integer, it creates a pointer to an integer.

▪ To make life a little easier, focus on the fact that it’s a pointer.

Don’t worry about its data type for now.

▪ &  – ‘address of’ operator. &a  retrieves a pointer to a .

▪ When a function takes a pointer as an argument, you need to

give it an address

▪ After passing the value of the pointer (memory address), we

can dereference it ( *  operator) to retrieve/change the data it

points to:

▪ *x = 45;

Pointer Syntax

CS 521: Systems Programming 7



▪ Let’s say we have a pointer, int *p .

▪ If we assign a value to p , we are modifying the memory

address p  points to.

▪ However, if we dereference p , then we change the

actual memory it points at.

Pointing Somewhere Else

CS 521: Systems Programming 8



Demo: Writing swap()

CS 521: Systems Programming 9



▪ Pointers

▪ Argument Passing Conventions

Today’s Schedule

CS 521: Systems Programming 10



Functions are defined in C like this:

<return type> <function name>(<argument list>)
{
    ...
}

▪ If the function does not return a value, the return type should be

void

▪ If there are no arguments, then the argument list is void (not

required)

▪ Let’s dig a bit deeper into this…

Defining a Function

CS 521: Systems Programming 11



▪ Coming from the Java or Python world, we’re used to

passing inputs to our functions

▪ The result (output) of the function is usually given to us

in the return value

▪ In Python you can even return a tuple. Nice!

▪ This is not the case with C.

▪ In many cases, both the function inputs and outputs

are passed in as arguments

▪ The return value is used for error handling

Argument Conventions [1/2]

CS 521: Systems Programming 12



Here’s an example:

/* Here's a function that increments an integer. */                   
void add_one(int *i)
{                   
   *i = *i + 1;   
}

int a = 6;
add_one(&a); /* a is now 7 */               

Argument Conventions [2/2]

CS 521: Systems Programming 13



▪ In C, some of the function arguments serve as outputs

▪ Or in the example we just saw, the function argument is

both an input and an output!

▪ Some API designers even label these arguments as “in”

or “out” args (example from the Windows API):

BOOL WINAPI FindNextFile(               
 _In_ HANDLE hFindFile,   
 _Out_ LPWIN32_FIND_DATA lpFindFileData
);                                     

“In/Out” Arguments

CS 521: Systems Programming 14



▪ Reason 1: C does not have exceptions

▪ Problem in a Java/Python function? Throw an

exception!

▪ Exceptions are a bit controversial among

programming language designers

▪ In C, the return value of functions often indicates

success or failure, called a status code

▪ Functions don’t have to be designed this way, but it’s a

very common convention

That’s Weird… Why?!

CS 521: Systems Programming 15



▪ Reason 2: Speed!

▪ Return values have to be copied back to the calling

function

▪ Say my function returns a bitmap image. The entire

thing is going to get copied!

▪ In a language that focuses on speed and efficiency,

updating the values directly in memory is faster

▪ Imagine transferring lots of large strings, objects, etc.

around your program, copying them the whole time

Efficiency

CS 521: Systems Programming 16



▪ The return value might indicate a status code… and it

might not.

▪ To be sure, use the man  (manual) pages

▪ (You could also google it, but that can occasionally

lead you to the wrong documentation / advice)

▪ The C documentation is in section 3 of the man pages:

▪ man 3 printf

▪ Each man page will explain how the arguments and

return values are used

Arguments/Return Values: How to Know?

CS 521: Systems Programming 17



▪ Many C functions return a status code and set errno
▪ Global variable that contains the last error number

▪ You can use the perror()  function to convert this

number into plain English (or your local language)

▪ Pass in a string prefix to help you trace your code:

▪ Call perror("open");  after open(...)  call

▪ Result: open: No such file or directory
▪ (assuming the file being opened didn’t actually

exist)

Error Messages

CS 521: Systems Programming 18



▪ In C, there’s a difference between function()  and

function(void)

▪ void arg: the function takes no arguments

▪ Empty arg list: the function may or may not take

arguments

▪ If it does, they can be of any type and there can be

any number of them

void Argument [1/3]

CS 521: Systems Programming 19



▪ Why is this important?

▪ First, to understand older code

▪ From the C11 standard:

▪ “The use of function declarators with empty

parentheses (not prototype-format parameter type

declarators) is an obsolescent feature.”

▪ Second, this may lead to incorrect function prototypes

or passing incorrect args in your code

void Argument [2/3]

CS 521: Systems Programming 20



So, to sum up:

/* Takes an unspecified number of args: */
void function();

And:

/* Takes no args: */
void function(void);

void Argument [3/3]

CS 521: Systems Programming 21


