
Strings and I/O Streams

CS 521: Systems Programming

Lecture 8

▪ Strings

▪ I/O Streams

Today’s Schedule

CS 521: Systems Programming 2

▪ Strings

▪ I/O Streams

Today’s Schedule

CS 521: Systems Programming 3

▪ In C, strings are just special arrays of characters:

▪ char str[] = "Hello World!"; // Mutable (array)

▪ char *str = "Hello World!"; // Immutable (str. literal)

▪ You can’t see it, but the reason these character arrays are

special is because they end in \0
▪ The NUL terminator

▪ As we already discussed, we need to either pass dimensions

along with arrays OR include some way of knowing where they

end

▪ \0 means “the end!”

C Strings

CS 521: Systems Programming 4

▪ Let’s look at C strings:

▪ Note how our string contains 6 characters, but the array

representation has 7 due to the NUL byte

▪ \0 is a control character

▪ Just like \n , etc., we write it with two characters but it is just

shorthand for a single character

▪ Its value also happens to be 0 (decimal)

▪ C string functions assume this is present; if it’s not, you only

have an array of characters and your program will crash

Strings as Arrays

CS 521: Systems Programming 5

▪ #include <string.h>

▪ strcpy – copy one string to another

▪ strcat – concatenate two strings

▪ strcmp – test for string equality

▪ strlen – returns the length of the string (ignoring \0)

▪ strstr - search for a substring inside a string

▪ strchr - search for a character inside a string

▪ sprintf - create a string using printf -style formatting

▪ strtok – tokenize the string (split it up)

▪ Remember: documentation available in the man pages

Some C String Library Functions

CS 521: Systems Programming 6

▪ The string functions you just saw have one weakness…

▪ If they lack the \0 , they break!

▪ This can lead to bugs, crashes, or even security

issues

▪ Most C string functions also have a version that allows

you to specify a fixed length

▪ strncmp , strncpy , etc.

▪ Notice the n : strNcpy

▪ Prefer these; they’re slightly safer (if it makes sense…)

Avoiding Buffer Overruns

CS 521: Systems Programming 7

▪ Let’s say you want to copy one string into another:

▪ char str1[] = "Hello World!";

▪ char *str2 = str1;

▪ This doesn’t make a copy; it just points to str1

▪ What about:

▪ char str2[] = str1;

▪ Nope: error: array initializer must be an

initializer list or string literal

Copying a String [1/3]

CS 521: Systems Programming 8

▪ We could loop through the array and copy each

character into the other, but that’s a lot of work

▪ Better solution: strcpy

▪ (let’s take a quick peek at the man page)

char str1[] = "Hello World!";
char str2[12];
strcpy(str2, str1);
printf("%s\n", str2);

But wait… This code has a big problem: array size

Copying a String [2/3]

CS 521: Systems Programming 9

Let’s fix our bug:

char str1[] = "Hello World!";
char str2[13];
strcpy(str2, str1);
printf("%s\n", str2);

We could also create a much larger array to copy into.

Copying a String [3/3]

CS 521: Systems Programming 10

We can use the strlen function to find out how many

characters (not including the \0) are in a string:

char str[] = "Hello";
printf("Length = %zd\n", strlen(str));

How would this be different than sizeof(str) ?

Getting String Lengths

CS 521: Systems Programming 11

▪ We unfortunately can’t use == to check string equality

▪ Instead, we use the strcmp function

▪ It compares two strings based on their sort order

▪ If it returns 0 , the two strings are the same:

▪ if (strcmp(str_a, str_b) == 0) { /* same! */ }

▪ The following will not work as you might expect:

▪ if (strcmp(str_a, str_b)) { /* same! */ }
▪ There is a VERY good chance you’ll make this

mistake!

Comparing Strings (equality)

CS 521: Systems Programming 12

strcat (and strncat) concatenate strings:

char *strcat(char *dest, const char *src);

char x[128] = "Hello";
char *y = "World";

strcat(x, " ");
strcat(x, y);
strcat(x, "!");

printf("%s\n", x);

Be careful: dest must be initialized before using strcat !

Concatenating a String

CS 521: Systems Programming 13

You can use printf -style format specifiers to combine

strings with sprintf and snprintf :

char a[128];

char x[] = "Hello";
char *y = "World";
sprintf(x, "%s %s!", x, y);

Here, you’re basically “printing” to a string.

Concatenation: Another Option

CS 521: Systems Programming 14

▪ There are a lot of string functions and things you can do

with strings

▪ We will study more of them, but this gives you the

foundation you need for now

▪ We often use Input/Output Streams to read or write

strings

More String Functions

CS 521: Systems Programming 15

▪ Strings

▪ I/O Streams

Today’s Schedule

CS 521: Systems Programming 16

▪ Most useful programs will provide some type of input or

output

▪ Our main approach thus far is printing via printf

▪ What happens if we want input from the user? We can

use scanf :

printf("Please enter your age: ");
int age;
scanf("%d", &age);
printf("You are %d years old, huh? Wow!\n", age);

Input/Output Streams

CS 521: Systems Programming 17

Let’s greet the user:

char str[100];
printf("Enter your name: ");
scanf("%s", str);
printf("Hi, %s!\n", str);

▪ Wait a minute! Where’s our &?!

▪ Well, remember that when we see the [] brackets,

we’re grabbing the actual values (via dereference)

▪ The array name only = a pointer to the first element

Reading a String With scanf

CS 521: Systems Programming 18

▪ Each program gets allocated three I/O streams by

default:

▪ stdout (standard output)

▪ stderr (standard error)

▪ stdin (standard input)

▪ These streams have different functions…

Input/Output Streams

CS 521: Systems Programming 19

▪ When you call printf , you are writing to stdout

▪ This stream is designed for general program output; for

example, if you run ls then the list of files should

display on stdout

▪ You can use your shell to redirect stdout to a file:

▪ ls -l / > list_of_files.txt

stdout

CS 521: Systems Programming 20

▪ The standard error stream is used for diagnostic information

▪ Log messages often print to stderr

▪ Program “usage” messages often go there too

▪ This way, program output can still be passed to other

programs/files but we’ll still see diagnostics printed to the

terminal

▪ Lets us know when something went wrong

▪ Demo: find command

▪ Unlike stdout, stderr is not buffered

▪ Will be flushed to the terminal immediately

▪ More on that later

stderr

CS 521: Systems Programming 21

▪ The final stream, stdin, is how we provide program input

(via scanf , for example)

▪ This can be entered by the user, or we can redirect input

directly into a program:

▪ ./my_prog < ./test_file.txt
▪ Acts like a phantom user is typing the contents of

‘test_file.txt’ into the program

stdin

CS 521: Systems Programming 22

▪ > – output redirection: send stdout to a file instead of

the terminal

▪ cat something.txt > something_else.txt

▪ >> – output redirection, but will append to the file

instead of overwriting

▪ < – input redirection: read from file instead of stdin

Special Characters

CS 521: Systems Programming 23

▪ Let’s say we’re working on a bug and want to determine

what’s wrong… printf to the rescue!

▪ *cough*, *cough*, don’t do that, use logging… we’ll talk

about this later!

▪ Unfortunately, sometimes printing to the terminal can be

misleading

▪ The printf() may execute, but the program crashes

before any output is displayed

▪ This occurs due to Input/Output (I/O) Buffering

“printf debugging”

CS 521: Systems Programming 24

▪ Input/output operations are slow: they have high latency

▪ Printing to the terminal outputs to stdout

▪ Writing to disk or controlling an external hardware device are

also I/O operations

▪ These devices generally operate on buffers

▪ Example: our terminal has a 8-byte buffer; we fill up the buffer

before asking it to print the text

▪ You may have used buffered streams in Java to get better

performance

▪ Buffered I/O collects multiple I/O operations, combines them,

and then executes them as one big operation

I/O Buffering

CS 521: Systems Programming 25

▪ Sometimes when debugging your program crashes

before the buffer gets cleared

▪ Data is lost before the buffer is flushed

▪ To make the print operation happen now, we need to

flush the output stream:

▪ fflush(stdout);

Flushing the Output Stream

CS 521: Systems Programming 26

▪ Flushing the buffer when it’s not full or at inopportune

times for the OS incurs more latency

▪ Performing the print operation takes several steps, and

that takes time

▪ We can compare the performance of two C programs,

one that flushes I/O and one that does not

▪ Demo: flush.c

Why not Always Flush?

CS 521: Systems Programming 27

