
Structs

CS 521: Systems Programming

Lecture 10

▪ In C, a struct (structure) allows us to create groupings

of data

▪ And the elements (members) of a struct don’t have to

all be the same type, unlike arrays

▪ Structs are about as close as we get to classes in

Java/Python

▪ The big distinction: they only represent data

▪ No mixing of functions and data

▪ To create functions that operate on structs, you’ll pass

the struct in as an argument

Structs

CS 521: Systems Programming 2

Let’s create a struct to contain some numbers:

struct struct_name {
 int first_integer;
 int second_integer;
 float single_float;
};

Note the semicolon ; at the end of the declaration

Defining a Struct [1/3]

CS 521: Systems Programming 3

Or, arrays can be struct members. Here, we see a couple of

strings:

struct user_data {
 int account_number;
 char first_name[100];
 char last_name[100];
};

Defining a Struct [2/3]

CS 521: Systems Programming 4

A struct can contain another struct, but they cannot be

self-referential (contain themselves). However, a pointer to

the struct type can be a member:

struct user_data {
 int account_number;
 char first_name[100];
 char last_name[100];
 struct user_preferences prefs;
 struct user_data *children; /* <-- This could be an array */
};

Defining a Struct [3/3]

CS 521: Systems Programming 5

/* Creating a struct: */
struct struct_name s; /* <-- Values may be uninitialized */

/* Creating a struct and populating it: */
struct struct_name s1;
s1.first_integer = 3;
s1.second_integer = 9;
s1.single_float = 3.3f;

/* The same thing, but defined inline: */
struct struct_name s2 = { 3, 9, 3.3f };

/* Initializing everything to 0: */
struct struct_name s3 = { 0 };

Initializing a Struct

CS 521: Systems Programming 6

As you’ve seen, we use “dot notation” to set members of

a struct:

struct user_data user1;
user1.account_number = 12;

/* But... this doesn't work: */
user1.first_name = "Matthew";
/* Why? */

/* ...and how can we fix it? */

Setting Values

CS 521: Systems Programming 7

/* For strings */
struct user_data user1;
user1.account_number = 12;
strcpy(user1.first_name, "Matthew");
printf("%s\n", user1.first_name);

/* Copying... anything! (including arrays): */
size_t arr_sz = sizeof(arr) / sizeof(*arr);
memcpy(user1.some_array, arr, arr_sz);

Copying in Arrays and Strings

CS 521: Systems Programming 8

If you have a pointer to a struct, then members are

accessed via “arrow notation”:

void check_account(struct user_data *user1) {
 user1->account_number = 100;
 printf("%s's account number set to 100\n", user1->first_name);
}

/* Equivalent: */
(*user1).account_number = 100;

Basically, you must dereference the struct before

accessing its members. -> is just shorthand for this.

Pointers to Structs

CS 521: Systems Programming 9

▪ The most common place to put structs is at the top of your .c

file or in a header.

▪ Yes, you can actually declare a struct inside a function!

▪ One-time use: struct my_struct { ... } struct_name

(defines and creates a struct named ‘struct_name’ in one

step)

▪ You can forward declare a struct:

▪ struct my_struct;

▪ However, usage is limited: since we don’t know anything

about the struct members, you can’t refer to them

▪ (mostly helpful when declaring a pointer to the struct or

functions that take the struct as a parameter…)

Declaring a struct

CS 521: Systems Programming 10

▪ Q: Are structs passed like our regular primitives (by

value), or like arrays (essentially passed by reference)?

▪ A: by value

▪ Q: In other words, do we make copies when we pass a

struct around?

▪ A: Yes. Including when we return a struct!

▪ Q: Can we have structs inside of structs?

▪ A: Absolutely! But if the member is of the same type

then it needs to be a pointer.

Struct Q&A

CS 521: Systems Programming 11

You can explicitly set the storage size of struct members to

a particular number of bits:

struct settings {
 unsigned int discombobulate_thrusters : 1;
 unsigned int hyperdrive_enabled : 1;
 unsigned int anti_gravity_mode : 2;
};

▪ This can save a lot of space!

▪ You will most likely only use bitfields with unsigned int .

Bitfields [1/2]

CS 521: Systems Programming 12

▪ Some hardware devices use bits as on/off switches

▪ Bitfields give us a way to model that in code without

doing a lot of low-level bit manipulation

▪ Or, maybe you want to store a small number of states: if

you only have say, 4 possible options, then a 2-bit field

is perfect

▪ NOTE: sizeof() will not work on a bitfield.

Bitfields [2/2]

CS 521: Systems Programming 13

union is a close relative of the struct:

union my_union {
 int a;
 float b;
 struct user_data c;
}

▪ With one HUGE difference: they only store a single

member.

▪ Useful for managing chunks of data that could be

represented by multiple types

Unions [1/2]

CS 521: Systems Programming 14

union my_union {
 int a;
 float b;
 struct user_data c;
}

▪ Here, a , b , and c all have the same memory address.

▪ sizeof(union my_union) will return the size of the largest

member (probably c in this case).

▪ Nothing stops you from doing this with pointers instead

▪ Create a struct, store an int / float in the memory address

▪ Unions are a well-defined, official way of achieving this

Unions [2/2]

CS 521: Systems Programming 15

▪ Structs can be very useful for modeling objects or

groups of information

▪ Remember that they are copied by value, just like our

primitive types

▪ Consider passing large structs as “in/out args” to

avoid the cost of copying during return

▪ Generally they are stored in memory as they are written,

i.e., the same as if you’d just declared the members

outside of a struct

▪ However, the compiler is allowed to rearrange them!

Wrapping up: Structs

CS 521: Systems Programming 16

▪ In the past labs, we used getopt to handle command

line options

▪ Each option was probably represented by a variable

▪ See if you can modify one of your labs to use a struct for

its options!

▪ Bonus: set up an instance of the struct with default

options

▪ This allows you to quickly reset all options with the

assignment operator (e.g., struct1 = struct2 will

copy the values over)

Activity: Program Options

CS 521: Systems Programming 17

