
Inter-Process Communication

CS 521: Systems Programming

Lecture 15

▪ We previously discussed how the host OS tries its best

to isolate processes

▪ Processes should not be able to interfere with one

another

▪ To do privileged operations, we need to go through

the kernel with system calls

▪ However, it’s often useful to have processes

communicate

▪ Inter-Process Communication (IPC)

▪ IPC gives us safe, well-defined ways to communicate

Inter-Process Communication

CS 521: Systems Programming 2

▪ Processes need to share data

▪ “Data” can mean a lot of things:

▪ Plain text

▪ An image, video, program

▪ A message containing commands or other types of

information

▪ Without a well-defined interface, getting processes to

communicate descends into madness

Why IPC?

CS 521: Systems Programming 3

1. You double-click a web link saved to your desktop

2. The OS determines which program is responsible for

handling HTTP/S URIs

3. The program is launched if it isn’t already running

4. The OS delivers a message to the program:

5. OPEN https://google.com

An Example

CS 521: Systems Programming 4

https://google.com/

▪ We will cover three types of IPC in this class (although

there are many others):

▪ Files

▪ Signals

▪ Pipes

▪ You might be surprised that files could be considered a

form of IPC, but it’s actually one of the easiest and

simplest ways to communicate between processes!

Types of IPC

CS 521: Systems Programming 5

▪ Files

▪ Signals

▪ Pipes

Today’s Schedule

CS 521: Systems Programming 6

▪ Files

▪ Signals

▪ Pipes

Today’s Schedule

CS 521: Systems Programming 7

▪ Save a file to disk with one application, open it with

another application

▪ Needs a file system to make this happen

▪ On our VMs, we’re using ext4 . A recent Mac might

use apfs , and Windows NTFS (or maybe XFAT …)

▪ What happens when two applications open the same

file?

▪ Coordinate via file locks

▪ Can lock an entire file or only a portion

Files

CS 521: Systems Programming 8

▪ We have used fopen() to open and read files

▪ Lower-level option: open()
▪ This is a system call

▪ (fopen from the C library calls open on Linux)

▪ open returns a file descriptor – an integer that

represents the opened file

▪ This decouples the file’s absolute path in the file

system (e.g., /usr/bin/something) from I/O

operations

Opening a File

CS 521: Systems Programming 9

▪ stdin , stdout , and stderr have file descriptors

▪ The file abstraction is used thoroughly in Unix systems

(see /dev for devices)

▪ Once you’ve opened a file descriptor, you can read/write

the contents of the file or even redirect the stream

somewhere else

File Descriptors

CS 521: Systems Programming 10

▪ dup2 allows us to redirect streams

▪ int dup2(int fildes, int fildes2);

▪ Let’s say we want to make our standard output stream

go to a file we just opened

▪ We’ll do:

▪ dup2(fd, STDOUT_FILENO);

▪ This also deallocates (closes) the second fd

▪ You won’t see text printing directly to your terminal

anymore

Redirecting Streams: dup2

CS 521: Systems Programming 11

▪ Combine open and dup2 :

▪ int output = open("output.txt",

O_CREAT | O_WRONLY | O_TRUNC, 0666);

▪ dup2(output, STDOUT_FILENO);

▪ This is exactly what our shell does when we

use < and >

▪ cat /etc/passwd > some_file
▪ Opens “some_file” and then redirects the output of

the child process to that file instead!

Example: Redirecting to a File

CS 521: Systems Programming 12

Let’s say your shell encounters > in the command line…

1. Use fork to create a new process

2. Open the file that comes after the >

3. Redirect stdout to the file with dup2

4. Call exec to execute the program

▪ This is part of the reason why fork and exec are

split into two separate parts

Redirection Workflow

CS 521: Systems Programming 13

Demo: io-redir.c

CS 521: Systems Programming 14

▪ Files

▪ Signals

▪ Pipes

Today’s Schedule

CS 521: Systems Programming 15

▪ Signals are software-based interrupts

▪ Basically a notification sent to the process

▪ The kernel uses signals to inform processes when

events occur

▪ Handling a signal causes a jump in your program’s logic

to a signal handler

▪ You can use a null signal handler to ignore particular

signals

Signals

CS 521: Systems Programming 16

Demo: signal.c

CS 521: Systems Programming 17

▪ What kind of events are reported via signals?

▪ It depends on the kernel

▪ To find out, use:

/bin/kill -l

▪ Wait, what?!

▪ That’s right: kill is used to send signals to processes

▪ It doesn’t necessarily ‘kill’ the process in doing so

▪ But it can!

Events

CS 521: Systems Programming 18

▪ You’ve already been using signals quite a bit (but maybe

didn’t realize)

▪ Ever hit Ctrl+C to stop a running program?

▪ it sends SIGINT to the process

▪ Each signal is prefixed with SIG

▪ Processes can choose how to deal with signals when

they are received

▪ Including ignoring them… usually

Terminating a Process

CS 521: Systems Programming 19

Demo: unkillable.c

CS 521: Systems Programming 20

▪ SIGSTOP and SIGKILL cannot be caught or ignored

▪ SIGSTOP – stops (pauses) the process: Ctrl+Z

▪ SIGCONT tells a paused process to continue

▪ SIGKILL – terminates the process, no questions asked

▪ You may have heard of kill -9 <pid>

▪ 9 is SIGKILL

Special Signals

CS 521: Systems Programming 21

▪ Occasionally a process

will not respond to a

SIGTERM, SIGINT, etc.

▪ This is the appropriate

time to use SIGKILL

Using kill -9

CS 521: Systems Programming 22

▪ Set up a signal handler with signal :

signal(SIGINT, sigint_handler);
▪ Will call sigint_handler every time a SIGINT is

received

▪ Then implement the signal handling logic:

void sigint_handler(int signo) { ... }

Signal Handling

CS 521: Systems Programming 23

1. First, a process initiates the signal

▪ Terminal Emulator: user pressed Ctrl+C, so

▪ I should send SIGTERM to the current process

2. The kernel receives the signal request

3. Permissions are verified

▪ Can this user really send a signal to PID 3241?

4. The signal is delivered to the process

OS Signal Transmission Process

CS 521: Systems Programming 24

▪ If a process is busy doing something, it will be

interrupted by the signal

▪ Jumps from the current instruction to the signal handler

▪ (or performs the default operation if there is no signal

handler)

▪ Jumps back to where it was when the handler logic

completes

Reacting to a Signal

CS 521: Systems Programming 25

▪ Our good friend, the segmentation violation (aka

segfault) is also a signal

▪ SIGSEGV

▪ Bus error: SIGBUS

▪ So if segfaults are getting you down, try blocking them!

▪ What could go wrong?!

Segmentation Violation

CS 521: Systems Programming 26

▪ Not all signals are sent via key combinations from the

shell… We can send them programmatically or via the

command line

▪ Let’s send a SIGUSR1 signal to process 324:

kill -s SIGUSR1 324

▪ Simple as that!

▪ Or, in C:

int kill(pid_t pid, int signum);

Sending a Signal

CS 521: Systems Programming 27

▪ SIGCHLD is sent to the parent of a child process when it

exits, is interrupted, or resumes execution

▪ Useful in scenarios where the parent process needs to

be notified about child events

▪ or, in other words, when the parent is not already

wait() ing on the child

▪ Job list in the shell: when SIGCHLD is received, do a

non-blocking waitpid to determine which process

exited and remove it from the list (if backgrounded)

Tracking Children

CS 521: Systems Programming 28

▪ Files

▪ Signals

▪ Pipes

Today’s Schedule

CS 521: Systems Programming 29

▪ Pipes are a common way for programs to communicate

on Unix systems

▪ cat /etc/something | sort | head -n5

▪ Most useful for sharing unstructured data (such a text)

between processes

▪ They work like how they sound: if you want to send data

to another process, send it through the pipe

Pipes [1/2]

CS 521: Systems Programming 30

▪ Pipes are one of the fundamental forms of Unix IPC

▪ With pipes, we can “glue” several utilities together:

▪ grep neato file.txt | sort

▪ This will search for “neato” in file.txt and print each

match

▪ Next, these matches get sent over to the ‘sort’

utility

▪ Just like with I/O redirection, this is facilitated by dup2

Pipes [2/2]

CS 521: Systems Programming 31

▪ As we’ve seen, pipes are used frequently in the shell

▪ We can mix and match different utilities, and they all

work well together

▪ Awesome!

▪ Some genius must have designed all these programs to

work this way, right?

▪ Well, no. They all just read from stdin and then write

to stdout (and stderr)

▪ No coordination required between developers

In the Shell

CS 521: Systems Programming 32

▪ When you enter ‘ls’ in your shell, you’re running a

program

▪ This functionality is NOT built into your shell. Bash

simply finds and runs the ‘ls’ program. That’s it!

▪ There are some shell “commands” that actually aren’t

programs, called built-ins

▪ history

▪ exit

▪ cd – why does this need to be a built-in?

Builtins vs. External Programs

CS 521: Systems Programming 33

▪ I have posted a video from Bell Labs on the schedule

that discusses several design aspects of Unix

▪ Discussion on pipes starts right around the 5 minute

mark

Going to the Source

CS 521: Systems Programming 34

▪ Now back to pipes: we can create them with the pipe()

function

▪ Returns a set of file descriptors: the input and output

sides of the pipe

▪ Pipes aren’t very useful if they aren’t connected to

anything, though

▪ We can do this by fork() ing another process

The pipe function

CS 521: Systems Programming 35

▪ After calling fork() , both processes have a copy of the

pipe file descriptors

▪ Pipes only operate in one direction, though, so we need

to close the appropriate ends of the pipe

▪ You can think of a forked() pipe as one with four ends:

two input and output ends each

▪ We eliminate the ends we don’t need to control the

direction of data flow

▪ Amazing ASCII art drawing: >---<

Piping to Another Process

CS 521: Systems Programming 36

▪ To control data flow through the pipe, we close the ends

we won’t use

▪ For example:

▪ Child process closes FD 0 and reads from FD 1

▪ Parent process closes FD 1 and writes to FD 0

Controlling Flow

CS 521: Systems Programming 37

▪ You may be wondering: what good are pipes when we

have to start all the cooperating processes?

▪ There’s actually another option: FIFOs, aka named

pipes

▪ Create with the mkfifo command, then open as you

would a regular file descriptor

Async Process Creation

CS 521: Systems Programming 38

▪ Let’s say we want to make our standard output stream

go through the pipe we just created

▪ int fd[2];

pipe(fd);

▪ We’ll do:

▪ dup2(fd[0], STDOUT_FILENO);

Redirecting Streams to a Pipe

CS 521: Systems Programming 39

▪ We’ve seen only a few possibilities for IPC!

▪ Another option: sockets

▪ Communication… even over the network!

▪ Many Unix systems use D-Bus for more advanced IPC

▪ Windows has a similar concept: Windows Messages

▪ Windows applications are event based

▪ Almost everything that happens on Windows has

an event associated with it (WM_MOUSEMOVE ,

changing resolution, etc.)

Wrapping Up

CS 521: Systems Programming 40

Fun: Undelivered Events

CS 521: Systems Programming 41

