
Concurrency Bugs

CS 521: Systems Programming

Lecture 15

▪ Semaphores

▪ Concurrency Bugs

Today’s Schedule

CS 521: Systems Programming 2

▪ Semaphores

▪ Concurrency Bugs

Today’s Schedule

CS 521: Systems Programming 3

▪ We discussed using condition variables to protect a

shared, limited resource

▪ Such as whiteboards

▪ In our setup, we needed to maintain a mutex, a condition

variable, and a counter (number of students at the

board)

▪ There is a higher-level abstraction for handling this

situation: semaphores

Semaphores [1/2]

CS 521: Systems Programming 4

▪ Counting semaphores include the counter logic

▪ Two functions:

▪ P – proberen – “to test”

▪ V – vrijgave – “release”

▪ Invented by Edsger Dijkstra, a Dutch computer scientist

Semaphores [2/2]

CS 521: Systems Programming 5

▪ In pthreads, we have these functions:

▪ sem_wait

▪ sem_post

▪ Initialize with sem_init:

▪ int sem_init(sem_t *sem, int pshared, unsigned int

value);

pthread Semaphores

CS 521: Systems Programming 6

P(s):
 s = s – 1
 if (s < 0) , wait

V(s):
 s = s + 1
 Notify waiting threads

Breaking Down P/V Functions

CS 521: Systems Programming 7

Demo: thread-limit.c

CS 521: Systems Programming 8

▪ Semaphores

▪ Concurrency Bugs

Today’s Schedule

CS 521: Systems Programming 9

▪ Five silent philosophers sit around a table

▪ Each philosopher has two functions:

▪ Think

▪ Eat

▪ Five bowls of rice and five chopsticks are placed around

the table

▪ A philosopher must have two chopsticks to begin

eating

Dining Philosophers Problem

CS 521: Systems Programming 10

▪ Think until left chopstick is available

▪ Pick it up

▪ Think until right chopstick is available

▪ Pick it up

▪ Eat until full

▪ Put the chopsticks down

▪ Repeat

▪ Is this algorithm safe?

Dining Philosophers: Algorithm

CS 521: Systems Programming 11

▪ What will happen if all the philosophers pick up the

chopstick on the left at the same time?

▪ Everyone will have one chopstick

▪ Everyone will wait

▪ Deadlock

▪ See: deadlock.c

Problem 1: Deadlock

CS 521: Systems Programming 12

▪ In this situation, deadlock might not happen right away

▪ The philosophers will eat and think for eternity

▪ It’s their job, after all!

▪ Eventually, deadlock will happen

How Likely is Deadlock?

CS 521: Systems Programming 13

▪ Let’s assume the system won’t deadlock. We still have

another problem!

▪ Two (or three) of the philosophers might be a bit quicker

than the others

▪ Always get the chopsticks first

▪ The other philosophers wait, wait, and wait

▪ Never get a chance to eat

▪ This demonstrates resource starvation

▪ See starvation.c

Problem 2: Starvation

CS 521: Systems Programming 14

▪ Let’s assume that we only let a philosopher hold onto a single

chopstick for 1 minute

▪ After the minute elapses, they have to put it back down

▪ This will solve the problem, right?

▪ Not necessarily: it is possible that all the philosophers put down

the chopstick at the same time, and then pick them back up the

same time

▪ Livelock: the system keeps moving but makes no progress

▪ See livelock.c

Problem 3: Livelock

CS 521: Systems Programming 15

▪ If we can introduce a third party arbiter (Waiter), then we

can make sure the philosophers stay alive and get their

thinking done

▪ How is this implemented in code?

▪ With a mutex!

▪ To pick up a chopstick, you have to ask the waiter for

permission

▪ Only pick up chopsticks if you can take both

▪ You can put down a chopstick at any time

Solution: A Waiter

CS 521: Systems Programming 16

