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▪ Many of you have probably heard about or worked with

containers already

▪ So, what are they?

▪ A stricter form of isolation from other processes

▪ They behave kind of like a VM, but run on the same

kernel as the host

▪ Can’t virtualize another OS, like running Windows on

Linux

What’s a Container?
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▪ You can run one or more processes in a container

▪ These processes behave just as they did before, except

we impose more restrictions on them

▪ They might not be allowed to see other processes

outside the container

▪ Maybe they aren’t allowed to use all the CPU cores or

RAM

▪ Maybe we don’t let them access the network

▪ Or maybe they can’t access certain files

▪ That’s really it. Same as before, but with more lies �

Containing Processes
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▪ Containers are actually an evolution of the BSD jail

concept

▪ If you have an unreliable server process, put it in a jail

▪ If compromised, the jailed process is less likely to be

able to take over the entire system

▪ Processes in a container are often made to believe that

they are running on their own machine

▪ Isolated from all other processes on the host

A More Formal Description
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▪ We can dynamically change resource allocations to the

container, unlike VMs (usually)

▪ CPU usage allowed, memory, network/disk I/O, etc.

▪ Containers are much faster to start, stop, and

manipulate

▪ No need to go through a long boot process

▪ However, many containers start with an init

process that will launch all background services as

usual

Flexibility
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▪ On linux, control groups and namespaces allow rapid

changes to how resources are allocated

▪ What to limit disk write speed, CPU usage, etc.? Do it on

the fly via the cgroups API

▪ A decent amount of this infrastructure was built at

Google for their “Borg” project

▪ Cluster orchestration at massive scale

cgroups, namespaces
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▪ Resource limits

▪ Example: placing upper bounds on memory

▪ Prioritization

▪ Example: give certain groups higher CPU priority

▪ Accounting

▪ Allows us to monitor resource consumption (can be

used for billing, de-prioritizing groups, etc)

▪ Control

▪ Checkpointing, freezing, restarting

Control Groups Functionality
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▪ Cgroups give us control over resources, but don’t paint the full

picture

▪ Namespaces give us container isolation

▪ Users, process IDs, hostnames, timezones can all be distinct

from the host OS

▪ (Even though they’re running the same kernel)

▪ Can have separate mount points (both physical and virtual

devices)

▪ Maybe most importantly: network isolation so the container

appears to be its own network host

Namespace Isolation
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Let’s play with cgroups  functionality to limit the CPU

usage of particular processes.

First, determine what controllers are active:

$ cat /sys/fs/cgroup/cgroup.subtree_control
memory pids

If you don’t see the file above, then you aren’t running

cgroups2. (Are you on your VM?)

Using cgroups
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Now let’s enable CPU controllers. First, become root sudo

su - and then:

$ echo '+cpu' > /sys/fs/cgroup/cgroup.subtree_control
$ echo '+cpuset' > /sys/fs/cgroup/cgroup.subtree_control
$ cat /sys/fs/cgroup/cgroup.subtree_control
cpuset cpu memory pids

Enable CPU Controllers
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$ cd /sys/fs/cgroup/
$ mkdir group-name-here
$ cd group-name-here
$ ls

cgroup.threads          memory.min
cpu.max                 memory.oom.group
cpu.pressure            memory.pressure
cpuset.cpus             memory.stat
cpuset.cpus.partition   memory.swap.events
cpu.uclamp.min          pids.max

... Whoa, where did all those files come from?! ...

Create a cgroup
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# Do 'echo PID' > cgroup.procs' to add a process

$ echo 1000 > cgroup.procs
$ echo 1001 > cgroup.procs
$ echo 1002 > cgroup.procs
$ echo 1003 > cgroup.procs

Adding Processes to the Group
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# Which CPUs to use (comma-separated):
$ echo 1,2 > cpuset.cpus 

# Set the maximum CPU usage to the default (100%):
$ echo "max 100000" > cpu.max

# Set maximum CPU usage to 50% (100000 * 0.5)
$ echo '50000 100000' > cpu.max

Adding Rules
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▪ You can add processes to group(s) whenever you’d like

▪ Resource limits can be changed dynamically

▪ Try changing maximum CPU usage to 50% and watch

the output of top

▪ Change the cpuset.cpus  and note how only the

specific CPUs you choose are used

▪ And of course, CPU usage is only the most common

example. You can always limit memory, disk usage,

network, and more…

Tweaking the Rules

CS 521: Systems Programming 17



▪ Container Background

▪ Playing with cgroups

▪ Docker

Today’s Schedule

CS 521: Systems Programming 18



▪ Wait, doesn’t docker == containers?

▪ Well, not really.

▪ Docker provides an easy-to-use interface for working

with Linux cgroups/namespaces

▪ Btw: if you run Docker on macOS or Windows, it’s

virtualizing Linux!

▪ It makes it easy to compose containers by building off

base images, adding packages and code, and isolating

your container from the rest of the system

So What About Docker?
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▪ So… docker basically is an interface for working with

containers

▪ Alternatives: systemd-nspawn, podman, etc…

▪ We can use Docker to package up our software and

deploy it anywhere

▪ No need to hunt down packages or figure out how to

install things. It’s like a mini VM ready to go

▪ With bare metal performance (on Linux at least)

▪ Best of all, they’re isolated. You control how much

access they get.

Interfacing with the Container API
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▪ Currently the future of docker looks pretty bleak, but

we’ll see what happens

▪ Their tools/ecosystem are free, so now they’re trying

various avenues to “monetize” them

▪ Like letting you stay on specific versions is now a

“pro” feature

▪ Most of the “magic” Docker provides is in the Linux

kernel

▪ Their main advantage: good tooling/interfaces

▪ Except others are copying them now…

An Aside: The Future of Docker
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▪ You might have heard of Kubernetes…

▪ Open source version of the “Borg” cluster management

built at Google

▪ Or at least a close relative

▪ Kubernetes allows for orchestration of multiple

containers over large sets of machines

▪ If you’re google, you don’t want to worry about

managing tons of physical OR virtual machines

▪ Can be used in smallish deployments as well to

manage all your containers

One More Thing: Kubernetes
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Okay, to start off, let’s try simply running some

prepackaged software with Docker. First, we need to install

it, then enable and start its daemon.

# Install docker:
$ sudo pacman -Sy docker

# Enable and start the docker daemon:
$ sudo systemctl enable docker
$ sudo systemctl start docker

Next, running software…

Installing Docker
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▪ Let’s say that we want to play some games

▪ We’ll spin up a RetroArch container to do this:

▪ sudo docker run --rm -p 8080:80 \

inglebard/retroarch-web
▪ inglebard/retroarch-web : the software we’re

going to run. Docker will automatically download it

▪ --rm : remove container after it finishes running

▪ -p : map internal container ports to the outside

machine (port 80 inside the container gets mapped

to 8080 on the host)

▪ But… it’s running on the VM. How do we get there?

Running with Docker
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▪ We need a way of accessing our VM from our local

development machines

▪ Let’s forward the ports with ssh :

▪ ssh deltron -L 8080:localhost:8080

Forwarding Ports with ssh
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