
Containers

CS 521: Systems Programming

Lecture 16

▪ Container Background

▪ Playing with cgroups

▪ Docker

Today’s Schedule

CS 521: Systems Programming 2

▪ Container Background

▪ Playing with cgroups

▪ Docker

Today’s Schedule

CS 521: Systems Programming 3

▪ Many of you have probably heard about or worked with

containers already

▪ So, what are they?

▪ A stricter form of isolation from other processes

▪ They behave kind of like a VM, but run on the same

kernel as the host

▪ Can’t virtualize another OS, like running Windows on

Linux

What’s a Container?

CS 521: Systems Programming 4

▪ You can run one or more processes in a container

▪ These processes behave just as they did before, except

we impose more restrictions on them

▪ They might not be allowed to see other processes

outside the container

▪ Maybe they aren’t allowed to use all the CPU cores or

RAM

▪ Maybe we don’t let them access the network

▪ Or maybe they can’t access certain files

▪ That’s really it. Same as before, but with more lies �

Containing Processes

CS 521: Systems Programming 5

▪ Containers are actually an evolution of the BSD jail

concept

▪ If you have an unreliable server process, put it in a jail

▪ If compromised, the jailed process is less likely to be

able to take over the entire system

▪ Processes in a container are often made to believe that

they are running on their own machine

▪ Isolated from all other processes on the host

A More Formal Description

CS 521: Systems Programming 6

▪ We can dynamically change resource allocations to the

container, unlike VMs (usually)

▪ CPU usage allowed, memory, network/disk I/O, etc.

▪ Containers are much faster to start, stop, and

manipulate

▪ No need to go through a long boot process

▪ However, many containers start with an init

process that will launch all background services as

usual

Flexibility

CS 521: Systems Programming 7

▪ On linux, control groups and namespaces allow rapid

changes to how resources are allocated

▪ What to limit disk write speed, CPU usage, etc.? Do it on

the fly via the cgroups API

▪ A decent amount of this infrastructure was built at

Google for their “Borg” project

▪ Cluster orchestration at massive scale

cgroups, namespaces

CS 521: Systems Programming 8

▪ Resource limits

▪ Example: placing upper bounds on memory

▪ Prioritization

▪ Example: give certain groups higher CPU priority

▪ Accounting

▪ Allows us to monitor resource consumption (can be

used for billing, de-prioritizing groups, etc)

▪ Control

▪ Checkpointing, freezing, restarting

Control Groups Functionality

CS 521: Systems Programming 9

▪ Cgroups give us control over resources, but don’t paint the full

picture

▪ Namespaces give us container isolation

▪ Users, process IDs, hostnames, timezones can all be distinct

from the host OS

▪ (Even though they’re running the same kernel)

▪ Can have separate mount points (both physical and virtual

devices)

▪ Maybe most importantly: network isolation so the container

appears to be its own network host

Namespace Isolation

CS 521: Systems Programming 10

▪ Container Background

▪ Playing with cgroups

▪ Docker

Today’s Schedule

CS 521: Systems Programming 11

Let’s play with cgroups functionality to limit the CPU

usage of particular processes.

First, determine what controllers are active:

$ cat /sys/fs/cgroup/cgroup.subtree_control
memory pids

If you don’t see the file above, then you aren’t running

cgroups2. (Are you on your VM?)

Using cgroups

CS 521: Systems Programming 12

Now let’s enable CPU controllers. First, become root sudo

su - and then:

$ echo '+cpu' > /sys/fs/cgroup/cgroup.subtree_control
$ echo '+cpuset' > /sys/fs/cgroup/cgroup.subtree_control
$ cat /sys/fs/cgroup/cgroup.subtree_control
cpuset cpu memory pids

Enable CPU Controllers

CS 521: Systems Programming 13

$ cd /sys/fs/cgroup/
$ mkdir group-name-here
$ cd group-name-here
$ ls

cgroup.threads memory.min
cpu.max memory.oom.group
cpu.pressure memory.pressure
cpuset.cpus memory.stat
cpuset.cpus.partition memory.swap.events
cpu.uclamp.min pids.max

... Whoa, where did all those files come from?! ...

Create a cgroup

CS 521: Systems Programming 14

Do 'echo PID' > cgroup.procs' to add a process

$ echo 1000 > cgroup.procs
$ echo 1001 > cgroup.procs
$ echo 1002 > cgroup.procs
$ echo 1003 > cgroup.procs

Adding Processes to the Group

CS 521: Systems Programming 15

Which CPUs to use (comma-separated):
$ echo 1,2 > cpuset.cpus

Set the maximum CPU usage to the default (100%):
$ echo "max 100000" > cpu.max

Set maximum CPU usage to 50% (100000 * 0.5)
$ echo '50000 100000' > cpu.max

Adding Rules

CS 521: Systems Programming 16

▪ You can add processes to group(s) whenever you’d like

▪ Resource limits can be changed dynamically

▪ Try changing maximum CPU usage to 50% and watch

the output of top

▪ Change the cpuset.cpus and note how only the

specific CPUs you choose are used

▪ And of course, CPU usage is only the most common

example. You can always limit memory, disk usage,

network, and more…

Tweaking the Rules

CS 521: Systems Programming 17

▪ Container Background

▪ Playing with cgroups

▪ Docker

Today’s Schedule

CS 521: Systems Programming 18

▪ Wait, doesn’t docker == containers?

▪ Well, not really.

▪ Docker provides an easy-to-use interface for working

with Linux cgroups/namespaces

▪ Btw: if you run Docker on macOS or Windows, it’s

virtualizing Linux!

▪ It makes it easy to compose containers by building off

base images, adding packages and code, and isolating

your container from the rest of the system

So What About Docker?

CS 521: Systems Programming 19

▪ So… docker basically is an interface for working with

containers

▪ Alternatives: systemd-nspawn, podman, etc…

▪ We can use Docker to package up our software and

deploy it anywhere

▪ No need to hunt down packages or figure out how to

install things. It’s like a mini VM ready to go

▪ With bare metal performance (on Linux at least)

▪ Best of all, they’re isolated. You control how much

access they get.

Interfacing with the Container API

CS 521: Systems Programming 20

▪ Currently the future of docker looks pretty bleak, but

we’ll see what happens

▪ Their tools/ecosystem are free, so now they’re trying

various avenues to “monetize” them

▪ Like letting you stay on specific versions is now a

“pro” feature

▪ Most of the “magic” Docker provides is in the Linux

kernel

▪ Their main advantage: good tooling/interfaces

▪ Except others are copying them now…

An Aside: The Future of Docker

CS 521: Systems Programming 21

▪ You might have heard of Kubernetes…

▪ Open source version of the “Borg” cluster management

built at Google

▪ Or at least a close relative

▪ Kubernetes allows for orchestration of multiple

containers over large sets of machines

▪ If you’re google, you don’t want to worry about

managing tons of physical OR virtual machines

▪ Can be used in smallish deployments as well to

manage all your containers

One More Thing: Kubernetes

CS 521: Systems Programming 22

Okay, to start off, let’s try simply running some

prepackaged software with Docker. First, we need to install

it, then enable and start its daemon.

Install docker:
$ sudo pacman -Sy docker

Enable and start the docker daemon:
$ sudo systemctl enable docker
$ sudo systemctl start docker

Next, running software…

Installing Docker

CS 521: Systems Programming 23

▪ Let’s say that we want to play some games

▪ We’ll spin up a RetroArch container to do this:

▪ sudo docker run --rm -p 8080:80 \

inglebard/retroarch-web
▪ inglebard/retroarch-web : the software we’re

going to run. Docker will automatically download it

▪ --rm : remove container after it finishes running

▪ -p : map internal container ports to the outside

machine (port 80 inside the container gets mapped

to 8080 on the host)

▪ But… it’s running on the VM. How do we get there?

Running with Docker

CS 521: Systems Programming 24

https://www.retroarch.com/

▪ We need a way of accessing our VM from our local

development machines

▪ Let’s forward the ports with ssh :

▪ ssh deltron -L 8080:localhost:8080

Forwarding Ports with ssh

CS 521: Systems Programming 25

