
Condition Variables

CS 521: Systems Programming

Lecture 19

▪ We discussed how busy waiting is one way to prevent

access to a critical section

▪ Unfortunately, busy waiting is very inefficient!

▪ So, we have a better way: mutexes

▪ What about when we want to wait for something to

happen before our thread does its work?

▪ For example: I will wait until I receive a “ready”

message before I process a file

Waiting for Changes [1/2]

CS 521: Systems Programming 2

▪ We could busy wait on a variable to change

▪ Once the change happens, we know we can proceed

▪ Once again, this is inefficient

▪ Consider:

▪ We have two threads, A and B

▪ Thread A preprocesses the input file

▪ Thread B calculates the statistics

▪ In this case, thread B needs to wait for A

▪ There is a conditional dependency

Waiting for Changes [2/2]

CS 521: Systems Programming 3

▪ To wait for something to happen, we can use condition

variables

▪ Condition variables have two related functions:

▪ wait – wait for the condition to become true

▪ signal – inform the waiting thread that the condition

has changed

▪ When a thread is waiting, it blocks

Waiting on a… Condition!

CS 521: Systems Programming 4

▪ The big difference between blocking and actively

waiting is efficiency

▪ Rather than constantly checking, go to sleep and let the

operating system wake you up when something

happens

▪ Are we there yet?

▪ Are we there yet?

▪ Are we there yet?

▪ Are we there yet?

Blocking vs. Busy Waiting

CS 521: Systems Programming 5

▪ You might be inclined to use plain mutexes to achieve

the functionality we’re discussing here

▪ After all, if you have Thread B try to lock a mutex that is

already locked by Thread A, you can sort of pull this off

▪ Thread B will block until Thread A unlocks it

▪ This has some big disadvantages though…

▪ Can we think of all the issues here?

Alternatives [1/2]

CS 521: Systems Programming 6

▪ How about having both threads lock a mutex as the very first

thing they do?

▪ Race condition!

▪ Maybe Thread A creates Thread B?

▪ Wouldn’t work with more than these two threads though

▪ …and doesn’t that defeat the purpose? (Just use Thread A

then!)

▪ Or the main thread locks a mutex, creates Thread A, unlocks,

then creates Thread B

▪ No!! Still has a race condition �

Alternatives [2/2]

CS 521: Systems Programming 7

▪ Often, mutual exclusion is not enough…

▪ The point of a condition variable is to give us the ability

to signal other threads and wait for things

▪ This helps solve a classic problem: bounded

producer/consumer

▪ Task queue with a maximum size

▪ One or more threads are producers that add tasks

▪ One or more threads are consumers that remove (and

process) the tasks

Condition Variables

CS 521: Systems Programming 8

▪ Initialization is just like a mutex:

pthread_cond_t cond_variable =

PTHREAD_COND_INITIALIZER;

▪ Note: to use a condition variable, you also need a mutex

▪ Why? This protects the condition variable logic

Initializing a Condition Variable

CS 521: Systems Programming 9

▪ pthread_cond_init(&cond, NULL);

▪ pthread_cond_wait(&cond, &mutex); – waits for a signal

▪ pthread_cond_signal(&cond); – signals a waiting

thread

▪ We don’t have control over which thread will wake up

▪ pthread_cond_broadcast(&cond);
▪ Signals all waiting threads

Using a Condition Variable [1/2]

CS 521: Systems Programming 10

void *thread_a(void *) {
 pthread_mutex_lock(&mutex);
 while (!condition) {
 /* Note: mutex is released + reacquired here: */
 pthread_cond_wait(&cond, &mutex);
 }
 /* Do the work we were waiting to do! (mutex reacquired) */
 pthread_mutex_unlock(&mutex);
}

void *thread_b(void *) {
 pthread_mutex_lock(&mutex);
 /* Do whatever thread A is waiting for us to do ... */
 /* Signal the other thread! */
 pthread_cond_signal(&cond);
 pthread_mutex_unlock(&mutex);
}

Using a Condition Variable [2/2]

CS 521: Systems Programming 11

Let’s say we have a whiteboard and we want to make sure

only four students can use it at a time:

 pthread_mutex_lock(&mutex);
 while (students_at_board > 4) { // <--- our condition
 /* Note: mutex is released here: */
 pthread_cond_wait(&cond, &mutex);
 /* Note: mutex is reacquired here */
 }

The Condition

CS 521: Systems Programming 12

▪ Let’s use condition variables to implement producer-

consumer synchronization

▪ (A work queue)

▪ Thread 1:

Producer – creates the tasks

▪ Thread 2…N:

Consumers – wait for tasks and carry them out

▪ Usually it’s easier to produce the tasks than consume

them (resulting in this one-to-many setup), but that

doesn’t have to always be true!

Common Producer/Consumer Setup

CS 521: Systems Programming 13

▪ Imagine you are writing a web server

▪ The server listens for incoming requests and places

them in a queue to be handled by worker threads

▪ We can’t have the main thread serve the requests

directly because then it can’t listen for more

connections

▪ Web servers need to handle thousands of

concurrent clients!

▪ Ok, protect the queue with a mutex + condition variable

and have N threads wait for work

Web Server: Prod/Con [1/3]

CS 521: Systems Programming 14

▪ Now the main thread can accept connections and the

worker threads serve up the HTML pages, images, etc.

▪ Except… we still have a problem

▪ What happens if there are too many incoming

connections?

▪ If we use a fixed-sized queue, we’ll eventually run out

of space and segfault

▪ If we use a flexible queue (say, an elist), then we

could run out of memory

▪ We need to be able to stop producing temporarily

Web Server: Prod/Con [2/3]

CS 521: Systems Programming 15

▪ How can we stop production?

▪ …

▪ Easy answer: don’t put any more connections in the

work queue

▪ But how do we know when it has space again?

▪ You guessed it! Another condition variable!

▪ Block (wait) if the queue is currently full, and signal

after each thread completes its work

▪ Places backpressure on the network connection

Web Server: Prod/Con [3/3]

CS 521: Systems Programming 16

▪ We can also use condition variables to build a barrier

▪ Helpful on systems like macOS that do not support

them

▪ pthread_cond_broadcast can signal all waiting threads

▪ Each thread that calls barrier() increments a counter

▪ Once the counter hits N, then do a broadcast to all

waiting threads

Building a Barrier [1/2]

CS 521: Systems Programming 17

void barrier(void)
{
 pthread_mutex_lock(&bar_mut);
 bar_count++;
 if (bar_count == thread_count) {
 bar_count = 0;
 pthread_cond_broadcast(&bar_cond);
 } else {
 // Wait unlocks mutex and puts thread to sleep.
 // Put wait in while loop in case some other
 // event awakens thread.
 while (pthread_cond_wait(&bar_cond, &bar_mut) != 0);
 // Mutex is relocked at this point.
 }
 pthread_mutex_unlock(&bar_mut);
}

Building a Barrier [2/2]

CS 521: Systems Programming 18

