
Proof-of-Work and Bitcoin

CS 521: Systems Programming

Lecture 20

▪ Proof-of-work Systems

▪ Hashcash

▪ Bitcoin

Today’s Agenda

CS 521: Systems Programming 2

▪ Proof-of-work Systems

▪ Hashcash

▪ Bitcoin

Today’s Agenda

CS 521: Systems Programming 3

▪ Wait a minute! I thought we were learning about

parallel programming!

▪ Did Matthew forget what class this is?

▪ Well, friends… Project 3 is up!

▪ And it involves threads

▪ And bitcoin mining

Proof-of-Work [1/2]

CS 521: Systems Programming 4

▪ Proof-of-work (POW) systems help prevent DDoS

attacks and other types of spamming

▪ Also useful in cryptocurrencies

▪ Main idea: give up some of your time (or computational

power) to legitimize an action or object

Proof-of-Work [2/2]

CS 521: Systems Programming 5

▪ Sea shells were used for thousands of years as legal

tender

▪ It takes time to collect shells, carve them, etc.

▪ In some cases, the shells were woven into

fabric/leather

▪ The currency itself reflected the time it took to be

made, and therefore determined its value

▪ Different groups used different shells/designs

▪ Only carry value because we say so

Shell Money

CS 521: Systems Programming 6

▪ Completely Automated Public Turing test to

tell Computers and Humans Apart

▪ CAPTCHAs are basically proof-of-work systems for

humans

▪ So in other words, POW is an annoying, time consuming

task for your computer to do just in the interest of

proving it’s not spamming/DDoSing

▪ Luckily computers don’t get annoyed as easily as we

do…

CAPTCHA

CS 521: Systems Programming 7

▪ POW systems use pricing functions to give the computer a

workout

▪ Dwork C., Naor M. Pricing via Processing or Combatting

Junk Mail.

▪ A pricing function has the following requirements:

▪ is moderately easy to compute

▪ is not amenable to amortization: given values,

the amortized cost of computing is

comparable to computing for any

▪ given and , it is easy to determine if

Pricing Functions

f

f

f L m ...m 1 L

f(m)...f(m)1 L

f(m)i 1 <= i <= L

x y y = f(x)

CS 521: Systems Programming 8

▪ A common pricing function is having the computer

perform hash inversions

▪ “What was the input that produced this hash code?”

▪ Hash inversions are tough to compute (assuming a

cryptographic hash function)

▪ After all, they’re designed to be one way functions

▪ Any time we map an infinite set of inputs to a finite set

of numbers (hash space), this is feasible, but still

tough.

Hash Inversions

CS 521: Systems Programming 9

▪ Let’s say our mission is to find a hash with four leading

zeros

▪ Start out with what we want to send:

▪ “Hello World!”

▪ We also need to append a nonce

▪ Number used only once

▪ We increase this with each hash attempt

▪ This will change our output hash each iteration

An Example [1/2]

CS 521: Systems Programming 10

▪ This approach allows us to eventually find our matching

hash, but has a weakness

▪ We can precompute the hashes and re-use them later

▪ We also need some type of identifier for this particular

transaction

▪ Maybe a centralized service hands out transaction IDs

▪ We could use the current time, as long as we can

assume clocks are reasonably synced up

An Example [2/2]

CS 521: Systems Programming 11

while True:
 nonce = nonce + 1
 string = message + str(nonce)
 hash = sha1(string)
 if prefix(hash) == '0000':
 # Send message with hash
 break

A Pricing Function

CS 521: Systems Programming 12

if sha1(msg.payload) == msg.hash:
 # It's valid… Whew! That was tough!
 # (You could also verify the
 # transaction id or timestamp here)

Verification

CS 521: Systems Programming 13

▪ To change the difficulty, we’ll just adjust the number of

zeros we want

▪ Unfortunately, the difficulty won’t increase linearly

▪ Approaches:

▪ Perform a bitwise comparison rather than string

(allows more precision)

▪ Have the sender perform multiple inversions(maybe

message1 + another nonce)

Varying the Difficulty

CS 521: Systems Programming 14

▪ Proof-of-work Systems

▪ Hashcash

▪ Bitcoin

Today’s Agenda

CS 521: Systems Programming 15

▪ Adds a new header to emails in an effort to reduce DDoS/spam

▪ Proposed by Dwork and Naor

▪ You can install the hashcash command line utility:

$ hashcash -m 'mmalensek@usfca.edu’

hashcash stamp: 1:20:200927:mmalensek@usfca.edu::ZeNi

+DkIeFrH3aUl:00

009nfO

▪ On the receiving end, all that has to be done is verify the SHA-1

hash of the header

Hashcash

CS 521: Systems Programming 16

1:20:200927:mmalensek@usfca.edu::ZeNi+DkIeFrH3aUl:009nfO

▪ ver: Hashcash version

▪ bits: Number of zero bits

▪ date: The time that the message was sent: YYMMDD

▪ resource: Resource data string being transmitted

▪ ext: Extension (currently ignored)

▪ rand: String of random characters

▪ counter: Nonce

Header Fields

CS 521: Systems Programming 17

▪ The sender performs the hash inversion and prepares

the header

▪ This takes a little CPU time, but shouldn’t be

noticeable

▪ Adds the header to the email message

▪ Performs the send operation as usual

Sending a Message

CS 521: Systems Programming 18

▪ On the receiving side, all we need to do is compute the

SHA-1 hash of the entire Hashcash header

▪ Then we check:

▪ That the correct number of leading zeroes is present

▪ The provided date is valid

▪ This takes an imperceptible amount of time

Receiving a Message

CS 521: Systems Programming 19

▪ Even heavy email users only send a few hundred emails

per day

▪ Spammers want to send millions

▪ This is going to cost a lot of CPU time

▪ Additionally, sending an email with no header or an

incorrect header will incur steep penalties

▪ Too many incorrect headers? Ban the IP

▪ Best of all, we don’t have to start paying for email

Why Hashcash Works

CS 521: Systems Programming 20

▪ Back in 1992 when Hashcash was invented, we didn’t

have such a huge variety of computing hardware

▪ Smartphones, tablets, refrigerators, etc.

▪ This makes coming up with the right difficulty for the

challenge… difficult.

▪ The power of computing hardware isn’t distributed

uniformly across the Earth

▪ Hash inversions are amenable to parallelism and

custom hardware

Why it doesn’t work [1/2]

CS 521: Systems Programming 21

▪ Spammers could adopt similar hardware to that of

Bitcoin miners

▪ GPUs, ASICs

▪ Depends on cost vs. benefit

▪ Related: cloud instances. Computing is so cheap!

▪ Since email is decentralized, you can’t force everyone to

use this new standard

▪ Would actually be easier nowadays (get Google and

Microsoft on board, and you’re just about done)

Why it doesn’t work [1/2]

CS 521: Systems Programming 22

▪ Proof-of-work Systems

▪ Hashcash

▪ Bitcoin

Today’s Agenda

CS 521: Systems Programming 23

▪ 1 BTC = 93,789 USD �

▪ Every time I talk about bitcoin I realize how rich I

would’ve been if I’d have bought some in 2017

▪ ~400,000 transactions per day

▪ Down from two years ago!

▪ ~19m bitcoins in circulation

▪ Maxes out at 21m

▪ See: http://blockchain.info

Bitcoin Now

CS 521: Systems Programming 24

http://blockchain.info/

▪ The Bitcoin blockchain is a decentralized database of

Bitcoin transactions

▪ Each block in the chain includes the hash of the

previous block

▪ Starts with the genesis block

▪ When a transaction occurs, it is added to the current

block and will be verified by miners

Blockchain

CS 521: Systems Programming 25

▪ A block is a list of transactions with some metadata

▪ Magic number (4 bytes) = 0xD9B4BEF9

▪ Block size (4 bytes)

▪ Block header

▪ Transaction counter

▪ Transaction data

Blocks

CS 521: Systems Programming 26

▪ Version

▪ Hash of the previous block

▪ This makes tampering with the chain difficult

▪ Current hash of the transactions in the block

▪ Timestamp (last update)

▪ Difficulty

▪ Nonce

Block Headers

CS 521: Systems Programming 27

▪ Bitcoin allows forks off of the current block

▪ Whichever fork is acknowledged and used by the most

participants becomes the “true” path

▪ Longest path wins

▪ Transactions that went to a “failed” fork are added back

to the “true” blockchain

Reaching Agreement

CS 521: Systems Programming 28

▪ Provisions are in place to ensure transactions are dealt

with in a reasonable amount of time

▪ Target: 10 minutes

▪ Every 2,016 blocks the system automatically adjusts its

difficulty to hit the 10-minute target

▪ From 2014 – 2015 the average number of nonces tried

before a new block could be created increased from 16

quintillion to 200 quintillion

Reaching an Agreement

CS 521: Systems Programming 29

▪ Bitcoin uses the Hashcash algorithm for a different

purpose: mining coins

▪ ”Mining” means verifying a block of transactions

▪ Finding the nonce (aka solution)

▪ Miners, who are the basis of transaction verification, are

paid in new bitcoins and transaction fees

▪ The reward of new bitcoins is halved every 210,000

blocks (~4 years)

▪ Monetary supply limited to 21m bitcoins

Mining Bitcoin

CS 521: Systems Programming 30

▪ In bitcoin, the difficulty of the challenge is varied to

keep the network chugging along

▪ Once all 21m bitcoins are created, miners will be

rewarded for verification via transaction fees only

▪ What is the cost vs. benefit of mining these coins?

▪ Electricity vs. the size of the reward

▪ Lots of companies now build power-efficient hardware

specifically for mining

Verification

CS 521: Systems Programming 31

▪ As difficulty goes up, the chances of a single miner

verifying a block goes down

▪ To combat this, pools of miners formed

▪ Pools divide up the work (nonces) among participants

▪ Rewarded with a share of new bitcoins based on how

much work was done

▪ Less wasted effort, but less reward

Pooled Mining

CS 521: Systems Programming 32

▪ We are consuming massive amounts of fossil fuels to

produce fake money

▪ Production is only hard because we make it so

▪ Mining hardware gets bought up and then discarded

once we move to harder hash inversions

▪ Some Useful Proof-of-Work systems try to do beneficial

work

▪ Finding prime numbers (Primecoin)

▪ Protein folding (Curecoin)

Moral Issues

CS 521: Systems Programming 33

