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Chapter 1

Shared-Memory Programming with
Pthreads

Recall that from a programmer’s point of view a shared-memory system is one in which all the
cores can access all the memory locations (see Figure 1.1). Thus, an obvious approach to the
problem of coordinating the work of the cores is to specify that certain memory locations are
“shared.” This is a very natural approach to parallel programming. Indeed, we might well wonder
why all parallel programs don’t use this shared-memory approach. However, we’ll see in this
chapter that there are problems that arise with programming shared-memory systems; problems
that are often different from the problems encountered in distributed memory programming.

For example, in Chapter ?? we saw that if different cores attempt to update a single shared-
memory location, then the contents of the shared location can be unpredictable. The code that
updates the shared location is an example of a critical section. We’ll see some other examples of
critical sections, and we’ll learn several methods for controlling access to a critical section.

We’ll also learn about other issues and techniques in shared-memory programming. In shared-
memory programming, an instance of a program running on a processor is usually called a thread
(unlike MPI, where it’s called a process). We’ll learn how to synchronize threads so that each
thread will wait to execute a block of statements until another thread has completed some work.
We’ll learn how to put a thread “to sleep” until a condition has occurred. We’ll see that there
are some circumstances in which it may at first seem that a critical section must be quite large.
However, we’ll also see that there are tools that can allow us to “fine-tune” access to these large
blocks of code so that more of the program can truly be executed in parallel. We’ll see that the
use of cache memories can actually cause a shared-memory program to run more slowly. Finally,
we’ll observe that functions that “maintain state” between successive calls can cause inconsistent
or even incorrect results.

In this chapter we’ll be using POSIX® Threads for most of our shared-memory functions. In the
next chapter we’ll look at an alternative approach to shared-memory programming called OpenMP.

1



2 CHAPTER 1. SHARED-MEMORY PROGRAMMING WITH PTHREADS

Interconnect

CPU CPU CPU CPU

Memory

f04-01-9780123742605.eps

Figure 1.1: A Shared-Memory System

1.1 Processes, Threads and Pthreads
Recall from Chapter ?? that in shared-memory programming, a thread is somewhat analogous to
a process in MPI programming. However, it can, in principle, be “lighter-weight.” A process is
an instance of a running (or suspended) program. In addition to its executable, it consists of the
following:

• A block of memory for the stack

• A block of memory for the heap

• Descriptors of resources that the system has allocated for the process—for example, file
descriptors (including stdout, stdin, and stderr)

• Security information—for example, information about which hardware and software re-
sources the process can access

• Information about the state of the process, such as whether the process is ready to run or is
waiting on a resource, the content of the registers including the program counter, and so on

In most systems, by default, a process’ memory blocks are private: another process can’t directly
access the memory of a process unless the operating system intervenes. This makes sense. If
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you’re using a text editor to write a program (one process—the running text editor), you don’t
want your browser (another process) overwriting your text editor’s memory. This is even more
crucial in a multiuser environment. Ordinarily, one user’s processes shouldn’t be allowed access
to the memory of another user’s processes.

However, this isn’t desirable when we’re running shared-memory programs. At a minimum,
we’d like certain variables to be available to multiple processes, allowing much easier memory
access. It is also convenient for the processes to share access to things like stdout and all other
process-specific resources, except for their stacks and program counters. This can be arranged
by starting a single process and then having the process start these additional “lighter-weight”
processes. For this reason, they’re often called light-weight processes.

The more commonly used term, thread, comes from the concept of “thread of control.” A
thread of control is just a sequence of statements in a program. The term suggests a stream of
control in a single process, and in a shared-memory program a single process may have multiple
threads of control.

As we noted earlier, in this chapter the particular implementation of threads that we’ll be using
is called POSIX® threads or, more often, Pthreads. POSIX®[?] is a standard for Unix-like oper-
ating systems—for example, Linux and macOS. It specifies a variety of facilities that should be
available in such systems. In particular, it specifies an application programming interface (API)
for multithreaded programming.

Pthreads is not a programming language (like C or Java). Rather, like MPI, Pthreads specifies
a library that can be linked with C programs. Unlike MPI, the Pthreads API is only available on
POSIX® systems — Linux, macOS, Solaris, HPUX, and so on. Also unlike MPI, there are a num-
ber of other widely used specifications for multithreaded programming: Java threads, Windows
threads, Solaris threads. However, all of the thread specifications support the same basic ideas, so
once you’ve learned how to program in Pthreads, it won’t be difficult to learn how to program with
another thread API.

Since Pthreads is a C library, it can, in principle, be used in C++ programs. However, the recent
C++11 standard includes its own shared-memory programming model with support for threads
(std::thread), so it may make sense to use it instead if you’re writing C++ programs.

1.2 Hello, World

Let’s take a look at a Pthreads program. In Program 1.1, the main function starts up several threads.
Each thread prints a message and then quits.
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1 # i n c l u d e <s t d i o . h>
2 # i n c l u d e < s t d l i b . h>
3 # i n c l u d e <p t h r e a d . h>
4
5 / * Globa l v a r i a b l e : a c c e s s i b l e t o a l l t h r e a d s * /
6 i n t thread_count ;
7
8 void *Hello ( void * rank ) ; / * Thread f u n c t i o n * /
9

10 i n t main ( i n t argc , char * argv [ ] ) {
11 long thread ; / * Use long i n case o f a 64− b i t s y s t e m * /
12 pthread_t* thread_handles ;
13
14 / * Get number o f t h r e a d s from command l i n e * /
15 thread_count = strtol ( argv [ 1 ] , NULL , 1 0 ) ;
16
17 thread_handles = malloc ( thread_count* s i z e o f ( pthread_t ) ) ;
18
19 f o r ( thread = 0 ; thread < thread_count ; thread++)
20 pthread_create (&thread_handles [ thread ] , NULL ,
21 Hello , ( void *) thread ) ;
22
23 printf ( "Hello from the main thread\n" ) ;
24
25 f o r ( thread = 0 ; thread < thread_count ; thread++)
26 pthread_join ( thread_handles [ thread ] , NULL ) ;
27
28 free ( thread_handles ) ;
29 re turn 0 ;
30 } / * main * /
31
32 void *Hello ( void * rank ) {
33 long my_rank = ( long ) rank ; / * Use long i n case o f 64− b i t s y s t e m * /
34
35 printf ( "Hello from thread %ld of %d\n" , my_rank , thread_count ) ;
36
37 re turn NULL ;
38 } / * H e l l o * /

Program 1.1: A Pthreads “hello, world” program
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1.2.1 Execution
The program is compiled like an ordinary C program, with the possible exception that we may
need to link in the Pthreads library:1

$ gcc −g −Wall −o pth_hello pth_hello . c −lpthread

The −lpthread tells the compiler that we want to link in the Pthreads library. Note that it’s
−lpthread, not −lpthreads. On some systems the compiler will automatically link in the library,
and −lpthread won’t be needed.

To run the program, we just type

$ . / pth_hello <number of threads>

For example, to run the program with 1 thread, we type

$ . / pth_hello 1

and the output will look something like this:

Hello from the main thread
Hello from thread 0 of 1

To run the program with four threads, we type

$ . / pth_hello 4

and the output will look something like this:

Hello from the main thread
Hello from thread 0 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 3 of 4

If your output appears out of order, don’t worry. As we will discuss later, we usually do not
have direct control of the order in which threads execute.

1.2.2 Preliminaries
Let’s take a closer look at the source code in Program 1.1. First notice that this is just a C pro-
gram with a main function and one other function. The program includes the familiar stdio.h and
stdlib.h header files. However, there’s a lot that’s new and different.

In Line 3 we include pthread.h, the Pthreads header file, which declares the various Pthreads
functions, constants, types, and so on.

1Recall that the dollar sign ($) is the shell prompt, so it shouldn’t be typed in. Also recall that for the sake of
explicitness, we assume that we’re using the Gnu C compiler, gcc, and we always use the options -g, -Wall, and
-o. See ?? for further information.
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In Line 6 we define a global variable thread_count. In Pthreads programs, global variables
are shared by all the threads. Local variables and function arguments—that is, variables declared
in functions—are (ordinarily) private to the thread executing the function. If several threads are
executing the same function, each thread will have its own private copies of the local variables and
function arguments. This makes sense if you recall that each thread has its own stack.

We should keep in mind that global variables can introduce subtle and confusing bugs. For
example, suppose we write a program in which we declare a global variable int x. Then we
write a function f in which we intend to use a local variable called x, but we forget to declare
it. The program will compile with no warnings, since f has access to the global x. But when
we run the program, it produces very strange output, which we eventually determine to have
been caused by the fact that the global variable x has a strange value. Days later, we finally
discover that the strange value came from f. As a rule of thumb, we should try to limit our
use of global variables to situations in which they’re really needed—for example, for a shared
variable.

In Line 15 the program gets the number of threads it should start from the command line.
Unlike MPI programs, Pthreads programs are typically compiled and run just like serial programs,
and one relatively simple way to specify the number of threads that should be started is to use a
command-line argument. This isn’t a requirement, it’s simply a convenient convention we’ll be
using.

The strtol function converts a string into a long int . It’s declared in stdlib.h, and its syntax
is

long strtol (
c o n s t char * number_p / * i n * / ,
char ** end_p / * o u t * / ,
i n t base / * i n * / ) ;

It returns a long int corresponding to the string referred to by number_p. The base of the represen-
tation of the number is given by the base argument. If end_p isn’t NULL, it will point to the first
invalid (that is, nonnumeric) character in number_p.

1.2.3 Starting the Threads
As we already noted, unlike MPI programs, in which the processes are usually started by a script,
in Pthreads the threads are started by the program executable. This introduces a bit of additional
complexity, as we need to include code in our program to explicitly start the threads, and we need
data structures to store information on the threads.

In Line 17 we allocate storage for one pthread_t object for each thread. The pthread_t data
structure is used for storing thread-specific information. It’s declared in pthread.h.

The pthread_t objects are examples of opaque objects. The actual data that they store is
system specific, and their data members aren’t directly accessible to user code. However, the
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Pthreads standard guarantees that a pthread_t object does store enough information to uniquely
identify the thread with which it’s associated. So, for example, there is a Pthreads function that
a thread can use to retrieve its associated pthread_t object, and there is a Pthreads function that
can determine whether two threads are in fact the same by examining their associated pthread_t

objects.
In Lines 19–21, we use the pthread_create function to start the threads. Like most Pthreads

functions, its name starts with the string pthread_. The syntax of pthread_create is

i n t pthread_create (
pthread_t* thread_p / * o u t * / ,
c o n s t pthread_attr_t* attr_p / * i n * / ,
void * (* start_routine ) ( void *) / * i n * / ,
void * args_p / * i n * / ) ;

The first argument is a pointer to the appropriate pthread_t object. Note that the object is not
allocated by the call to pthread_create; it must be allocated before the call. We won’t be using
the second argument, so we just pass NULL in our function call.2 The third argument is the function
that the thread is to run, and the last argument is a pointer to the argument that should be passed to
the function start_routine. The return value for most Pthreads functions indicates if there’s been
an error in the function call. In order to reduce the clutter in our examples, in this chapter (as in
most of the rest of the book) we’ll generally ignore the return values of Pthreads functions.

Let’s take a closer look at the last two arguments. The function that’s started by pthread_create

should have a prototype that looks something like this:

void * thread_function ( void * args_p ) ;

Recall that the type void* can be cast to any pointer type in C, so args_p can point to a list contain-
ing one or more values needed by thread_function. Similarly, the return value of thread_function
can point to a list of one or more values.

In our call to pthread_create, the final argument is a fairly common kluge: we’re effectively
assigning each thread a unique integer rank. Let’s first look at why we are doing this; then we’ll
worry about the details of how to do it.

Consider the following problem: We start a Pthreads program that uses two threads, but one of
the threads encounters an error. How do we, the users, know which thread encountered the error?
We can’t just print out the pthread_t object, since it’s opaque. However, if when we start the
threads, we assign the first thread rank 0, and the second thread rank 1, we can easily determine
which thread ran into trouble by just including the thread’s rank in the error message.

Since the thread function takes a void* argument, we could allocate one int in main for each
thread and assign each allocated int a unique value. When we start a thread, we could then pass a
pointer to the appropriate int in the call to pthread_create. However, most programmers resort to

2Passing NULL here uses the default set of Pthread attributes—settings that specify a variety of properties including
operating system scheduling parameters and the stack size of the new thread.
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some trickery with casts. Instead of creating an int in main for the “rank,” we cast the loop variable
thread to have type void*. Then in the thread function, hello, we cast the argument back to a long
(Line 33).

The result of carrying out these casts is “system-defined,” but most C compilers do allow this.
However, if the size of pointer types is different from the size of the integer type you use for the
rank, you may get a warning. On the machines we used, pointers are 64 bits, and ints are only 32
bits, so we use long instead of int .

Note that our method of assigning thread ranks and, indeed, the thread ranks themselves are
just a convenient convention that we’ll use. There is no requirement that a thread rank be passed
in the call to pthread_create, nor a requirement that a thread be assigned a rank. The following
thread procedure expects a pointer to a struct to be passed in for args_p. The struct contains
both a rank and the name of the task. (Imagine distinguishing between different requests in a web
server, for instance.)

s t r u c t thread_args {
long my_rank ;
char *task_name ;

} ;

void *Hello ( void *args ) {
s t r u c t thread_args* t_args = ( s t r u c t thread_args *) args ;
printf ( "Thread %ld is working on task ’%s’\n" ,

t_args−>my_rank , t_args−>task_name ) ;
re turn NULL ;

}

When we create the thread, a pointer to the appropriate struct is passed to pthread_create. We
can add the logic to do this at Line 19 (in this case, each thread has the same “task name”):

s t r u c t thread_args *t_args = malloc ( s i z e o f ( s t r u c t thread_args ) ) ;
t_args−>my_rank = thread ;
t_args−>task_name = "Hello task" ;
pthread_create (&thread_handles [ thread ] , NULL , Hello , ( void *) t_args ) ;

Also note that there is no technical reason for each thread to run the same function; we could
have one thread run hello, another run goodbye, and so on. However, as with the MPI programs,
we’ll typically use “single program, multiple data” style parallelism with our Pthreads programs.
That is, each thread will run the same thread function, but we’ll obtain the effect of different thread
functions by branching within a thread.
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1.2.4 Running the Threads
The thread that’s running the main function is sometimes called the main thread. Hence, after
starting the threads, it prints the message

Hello from the main thread

In the meantime, the threads started by the calls to pthread_create are also running. They
get their ranks by casting in Line 33, and then print their messages. Note that when a thread is
done, since the type of its function has a return value, the thread should return something. In this
example, the threads don’t actually need to return anything, so they return NULL.

As we hinted earlier, in Pthreads the programmer doesn’t directly control where the threads are
run.3 There’s no argument in pthread_create saying which core should run which thread; thread
placement is controlled by the operating system. Indeed, on a heavily loaded system, the threads
may all be run on the same core. In fact, if a program starts more threads than cores, we should
expect multiple threads to be run on a single core. However, if there is a core that isn’t being used,
operating systems will typically place a new thread on such a core.

1.2.5 Stopping the Threads
In Lines 25 and 26, we call the function pthread_join once for each thread. A single call to
pthread_join will wait for the thread associated with the pthread_t object to complete. The
syntax of pthread_join is

i n t pthread_join (
pthread_t thread / * i n * / ,
void ** ret_val_p / * o u t * / ) ;

The second argument can be used to receive any return value computed by the thread. In the
example, each thread returns NULL and eventually the main thread will call pthread_join on that
thread to complete its termination.

This function is called pthread_join because of a diagramming style that is often used to
describe the threads in a multithreaded process. If we think of the main thread as a single line
in our diagram, then, when we call pthread_create, we can create a branch or fork off the main
thread. Multiple calls to pthread_create will result in multiple branches or forks. Then, when
the threads started by pthread_create terminate, the diagram shows the branches joining the main
thread. See Figure 1.2.

As noted previously, every thread requires a variety of resources to be allocated, including
stacks and local variables. The pthread_join function not only allows us to wait for a particular
thread to finish its execution, but also frees the resources associated with the thread. In fact, not

3Some systems (for example, some implementations of Linux) do allow the programmer to specify where a thread
is run. However, these constructions will not be portable.
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Figure 1.2: Main thread forks and joins two threads

joining threads that have finished execution produces zombie threads that waste resources and may
even prevent the creation of new threads if left unchecked. If your program does not need to wait
for a particular thread to finish, it can be detached with the pthread_detach function to indicate
that its resources should be freed automatically upon termination. See Exercise 7 for an example
of using pthread_detach.

1.2.6 Error Checking
In the interest of keeping the program compact and easy to read, we have resisted the temptation
to include many details that would be important in a “real” program. The most likely source of
problems in this example (and in many programs) is the user input (or lack thereof). Therefore, it
would be a very good idea to check that the program was started with command line arguments,
and, if it was, to check the actual value of the number of threads to see if it’s reasonable. If you
visit the book’s website, you can download a version of the program that includes this basic error
checking.

In general, it is good practice to always check the error codes returned by the Pthreads func-
tions. This can be especially useful when you’re just starting to use Pthreads and some of the
details of function use aren’t completely clear. We’d suggest getting in the habit of consult-
ing the “RETURN VALUE” sections of the man pages for Pthreads functions (for instance, see
man pthread_create; you will note several return values that indicate a variety of errors).

1.2.7 Other Approaches to Thread Startup
In our example, the user specifies the number of threads to start by typing in a command-line
argument. The main thread then creates all of the “subsidiary” threads. While the threads are
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running, the main thread prints a message, and then waits for the other threads to terminate. This
approach to threaded programming is very similar to our approach to MPI programming, in which
the MPI system starts a collection of processes and waits for them to complete.

There is, however, a very different approach to the design of multithreaded programs. In this
approach, subsidiary threads are only started as the need arises. As an example, imagine a Web
server that handles requests for information about highway traffic in the San Francisco Bay Area.
Suppose that the main thread receives the requests and subsidiary threads fulfill the requests. At
1 o’clock on a typical Tuesday morning, there will probably be very few requests, while at 5
o’clock on a typical Tuesday evening, there will probably be thousands. Thus, a natural approach
to the design of this Web server is to have the main thread start subsidiary threads when it receives
requests.

Intuitively, thread startup involves some overhead. The time required to start a thread will be
much greater than, for instance, a floating point arithmetic operation, so in applications that need
maximum performance the “start threads as needed” approach may not be ideal. In such a case,
it is usually more performant to employ a scheme that leverages the strengths of both approaches:
our main thread will start all the threads it anticipates needing at the beginning of the program, but
the threads will sit idle instead of terminating when they finish their work. Once another request
arrives, an idle thread can fulfill it without incurring thread creation overhead. This approach is
called a thread pool, which we’ll cover in Programming Assignment 5.

1.3 Matrix-Vector Multiplication
Let’s take a look at writing a Pthreads matrix-vector multiplication program. Recall that if A=(ai j)
is an m×n matrix and x = (x0,x1, . . . ,xn−1)

T is an n-dimensional column vector,4 then the matrix-
vector product Ax = y is an m-dimensional column vector, y = (y0,y1, . . . ,ym−1)

T in which the ith
component yi is obtained by finding the dot product of the ith row of A with x:

yi =
n−1

∑
j=0

ai jx j.

See Figure 1.3.
Thus, pseudocode for a serial program for matrix-vector multiplication might look like this:

/ * For each row o f A * /
f o r ( i = 0 ; i < m ; i++) {

y [ i ] = 0 . 0 ;
/ * For each e l e m e n t o f t h e row and each e l e m e n t o f x * /
f o r ( j = 0 ; j < n ; j++)

4Recall that we use the convention that matrix and vector subscripts start with 0. Also recall that if b is a matrix
or a vector, then bT denotes its transpose.



12 CHAPTER 1. SHARED-MEMORY PROGRAMMING WITH PTHREADS

a00 a01 · · · a0,n−1
a10 a11 · · · a1,n−1

...
...

...
ai0 ai1 · · · ai,n−1
...

...
...

am−1,0 am−1,1 · · · am−1,n−1

x0
x1
...

xn−1

=

y0
y1
...

yi = ai0x0 +ai1x1 + · · ·ai,n−1xn−1
...

ym−1

Figure 1.3: Matrix-vector multiplication

y [ i ] += A [ i ] [ j ]* x [ j ] ;
}

We want to parallelize this by dividing the work among the threads. One possibility is to
divide the iterations of the outer loop among the threads. If we do this, each thread will compute
some of the components of y. For example, suppose that m = n = 6 and the number of threads,
thread_count or t, is three. Then the computation could be divided among the threads as follows:

Components
Thread of y

0 y[0], y[1]
1 y[2], y[3]
2 y[4], y[5]

To compute y[0], thread 0 will need to execute the code

y [ 0 ] = 0 . 0 ;
f o r ( j = 0 ; j < n ; j++)

y [ 0 ] += A [ 0 ] [ j ]* x [ j ] ;

Therefore, thread 0 will need to access every element of row 0 of A and every element of x. More
generally, the thread that has been assigned y[i] will need to execute the code

y [ i ] = 0 . 0 ;
f o r ( j = 0 ; j < n ; j++)

y [ i ] += A [ i ] [ j ]* x [ j ] ;

Thus, this thread will need to access every element of row i of A and every element of x. We see
that each thread needs to access every component of x, while each thread only needs to access its
assigned rows of A and assigned components of y. This suggests that, at a minimum, x should be
shared. Let’s also make A and y shared. This might seem to violate our principle that we should
only make variables global that need to be global. However, in the exercises, we’ll take a closer
look at some of the issues involved in making the A and y variables local to the thread function, and
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we’ll see that making them global can make good sense. At this point, we’ll just observe that if
they are global, the main thread can easily initialize all of A by just reading its entries from stdin,
and the product vector y can be easily printed by the main thread.

Having made these decisions, we only need to write the code that each thread will use for
deciding which components of y it will compute. In order to simplify the code, let’s assume that
both m and n are evenly divisible by t. Our example with m = 6 and t = 3 suggests that each thread
gets m/t components. Furthermore, thread 0 gets the first m/t, thread 1 gets the next m/t, and so
on. Thus, the formulas for the components assigned to thread q might be

first component: q× m
t

and
last component: (q+1)× m

t
−1.

With these formulas, we can write the thread function that carries out matrix-vector multiplication.
See Program 1.2. Note that in this code, we’re assuming that A, x, y, m, and n are all global and
shared.

void *Pth_mat_vect ( void * rank ) {
long my_rank = ( long ) rank ;
i n t i , j ;
i n t local_m = m / thread_count ;
i n t my_first_row = my_rank*local_m ;
i n t my_last_row = ( my_rank +1)* local_m − 1 ;

f o r ( i = my_first_row ; i <= my_last_row ; i++) {
y [ i ] = 0 . 0 ;
f o r ( j = 0 ; j < n ; j++)

y [ i ] += A [ i ] [ j ]* x [ j ] ;
}

re turn NULL ;
} / * P t h m a t v e c t * /

Program 1.2: Pthreads matrix-vector multiplication

If you have already read the MPI chapter, you may recall that it took more work to write a
matrix-vector multiplication program using MPI. This was because of the fact that the data struc-
tures were necessarily distributed, that is, each MPI process only has direct access to its own local
memory. Thus, for the MPI code, we need to explicitly gather all of x into each process’ memory.
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We see from this example that there are instances in which writing shared-memory programs is eas-
ier than writing distributed-memory programs. However, we’ll shortly see that there are situations
in which shared-memory programs can be more complex.

1.4 Critical Sections
Matrix-vector multiplication was very easy to code because the shared-memory locations were
accessed in a highly desirable way. After initialization, all of the variables—except y—are only
read by the threads. That is, except for y, none of the shared variables are changed after they’ve
been initialized by the main thread. Furthermore, although the threads do make changes to y,
only one thread makes changes to any individual component, so there are no attempts by two (or
more) threads to modify any single component. What happens if this isn’t the case? That is,
what happens when multiple threads update a single memory location? We also discuss this in
Chapters ?? and ??, so if you’ve read one of these chapters, you already know the answer. But
let’s look at an example.

Let’s try to estimate the value of π. There are lots of different formulas we could use. One of
the simplest is

π = 4
(

1− 1
3
+

1
5
− 1

7
+ · · ·+(−1)n 1

2n+1
+ · · ·

)
.

This isn’t the best formula for computing π, because it takes a lot of terms on the right-hand side
before it is very accurate. However, for our purposes, lots of terms will be better to demonstrate
the effects of parallelism.

The following serial code uses this formula:

double factor = 1 . 0 ;
double sum = 0 . 0 ;
f o r ( i = 0 ; i < n ; i++ , factor = −factor ) {

sum += factor / ( 2 * i + 1 ) ;
}
pi = 4 . 0 * sum ;

We can try to parallelize this in the same way we parallelized the matrix-vector multiplication
program: divide up the iterations in the for loop among the threads and make sum a shared variable.
To simplify the computations, let’s assume that the number of threads, thread_count or t, evenly
divides the number of terms in the sum, n. Then, if n̄ = n/t, thread 0 can add the first n̄ terms.
Therefore, for thread 0, the loop variable i will range from 0 to n̄−1. Thread 1 will add the next n̄
terms, so for thread 1, the loop variable will range from n̄ to 2n̄−1. More generally, for thread q
the loop variable will range over

qn̄,qn̄+1,qn̄+2, . . . ,(q+1)n̄−1.
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Furthermore, the sign of the first term, term qn̄, will be positive if qn̄ is even and negative if qn̄ is
odd. The thread function might use the code shown in Program 1.3.

1 void * Thread_sum ( void * rank ) {
2 long my_rank = ( long ) rank ;
3 double factor ;
4 long long i ;
5 long long my_n = n / thread_count ;
6 long long my_first_i = my_n*my_rank ;
7 long long my_last_i = my_first_i + my_n ;
8
9 i f ( my_first_i % 2 == 0) / * m y f i r s t i i s even * /

10 factor = 1 . 0 ;
11 e l s e / * m y f i r s t i i s odd * /
12 factor = − 1 . 0 ;
13
14 f o r ( i = my_first_i ; i < my_last_i ; i++ , factor = −factor ) {
15 sum += factor / ( 2 * i + 1 ) ;
16 }
17
18 re turn NULL ;
19 } / * Thread sum * /

Program 1.3: An attempt at a thread function for computing π

If we run the Pthreads program with two threads and n is relatively small, we find that the
results of the Pthreads program are in agreement with the serial sum program. However, as n gets
larger, we start getting some peculiar results. For example, with a dual-core processor we get the
following results:

n
105 106 107 108

π 3.14159 3.141593 3.1415927 3.14159265
1 Thread 3.14158 3.141592 3.1415926 3.14159264
2 Threads 3.14158 3.141480 3.1413692 3.14164686

Notice that as we increase n, the estimate with one thread gets better and better. In fact, with each
factor of 10 increase in n we get another correct digit. With n = 105, the result as computed by a
single thread has five correct digits. With n = 106, it has six correct digits, and so on. The result
computed by two threads agrees with the result computed by one thread when n = 105. However,
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for larger values of n, the result computed by two threads actually gets worse. In fact, if we ran
the program several times with two threads and the same value of n, we would see that the result
computed by two threads changes from run to run. The answer to our original question must clearly
be, “Yes, it matters if multiple threads try to update a single shared variable.”

Let’s recall why this is the case. Remember that the addition of two values is typically not a
single machine instruction. For example, although we can add the contents of a memory location
y to a memory location x with a single C statement,

x = x + y ;

what the machine does is typically more complicated. The current values stored in x and y will,
in general, be stored in the computer’s main memory, which has no circuitry for carrying out
arithmetic operations. Before the addition can be carried out, the values stored in x and y may
therefore have to be transferred from main memory to registers in the CPU. Once the values are in
registers, the addition can be carried out. After the addition is completed, the result may have to
be transferred from a register back to memory.

Suppose that we have two threads, and each computes a value that is stored in its private
variable y. Also suppose that we want to add these private values together into a shared variable x

that has been initialized to 0 by the main thread. Each thread will execute the following code:

y = Compute ( my_rank ) ;
x = x + y ;

Let’s also suppose that thread 0 computes y = 1 and thread 1 computes y = 2. The “correct” result
should then be x = 3. Here’s one possible scenario:

Time Thread 0 Thread 1
1 Started by main thread
2 Call Compute() Started by main thread
3 Assign y = 1 Call Compute()
4 Put x=0 and y=1 into registers Assign y = 2
5 Add 0 and 1 Put x=0 and y=2 into registers
6 Store 1 in memory location x Add 0 and 2
7 Store 2 in memory location x

So we see that if thread 1 copies x from memory to a register before thread 0 stores its result,
the computation carried out by thread 0 will be overwritten by thread 1. The problem could be
reversed: if thread 1 races ahead of thread 0, then its result may be overwritten by thread 0. In fact,
unless one of the threads stores its result before the other thread starts reading x from memory, the
“winner’s” result will be overwritten by the “loser.”

This example illustrates a fundamental problem in shared-memory programming: when mul-
tiple threads attempt to update a shared resource—in our case a shared variable—the result may
be unpredictable. Recall that more generally, when multiple threads attempt to access a shared
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resource such as a shared variable or a shared file, at least one of the accesses is an update, and the
accesses can result in an error, we have a race condition. In our example, in order for our code
to produce the correct result, we need to make sure that once one of the threads starts executing
the statement x = x + y, it finishes executing the statement before the other thread starts executing
the statement. Therefore the code x = x + y is a critical section. That is, it’s a block of code that
updates a shared resource that can only be updated by one thread at a time.

To further illustrate the concept of a race condition, imagine a bank wants to improve the
performance of its checking account system. An obvious first step would be to make the system
multithreaded; rather than processing a single transaction at a time, banking operations should be
spread across multiple threads to take advantage of parallelism. This works well — until multiple
transactions modify an account at the same time. Consider two pending transactions on a checking
account with an initial balance of $1000:

• A $100 utility bill payment

• A $500 salary deposit

After the transactions complete, the new account balance should be $1400. The salary deposit
will require an addition operation and the utility payment will require a subtraction. However, as
mentioned previously, these simple math operations will be broken into more than one machine
instruction. One possible outcome is:

Time Thread 0 (Bill Payment) Thread 1 (Salary Deposit)
1 Read Balance ($1000)
2 Read Balance ($1000) Calculate Balance + $500
3 Calculate Balance - $100 Write Balance ($1500)
4 Write Balance ($900)

Rather than the expected ending balance of $1400, we get $900 instead because the transaction
processed by thread 1 was overwritten by thread 0.

These types of issues are particularly difficult to debug because the outcome is non-deterministic.
It is entirely possible that the error shown above occurs less than 1% of the time and could be
influenced by external factors including the hardware, operating system, or process scheduling al-
gorithm. Even worse, attaching a debugger or adding printf statements to the code may change
the relative timing of the threads and seemingly “correct” the issue temporarily. Such bugs that
disappear when inspected are known as Heisenbugs (the act of observing the system alters its
state).

1.5 Busy-Waiting
To avoid race conditions, threads need exclusive access to shared memory regions. When, say,
thread 0 wants to execute the statement x = x + y, it needs to first make sure that thread 1 is not
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already executing the statement. Once thread 0 makes sure of this, it needs to provide some way for
thread 1 to determine that it, thread 0, is executing the statement, so that thread 1 won’t attempt to
start executing the statement until thread 0 is done. Finally, after thread 0 has completed execution
of the statement, it needs to provide some way for thread 1 to determine that it is done, so that
thread 1 can safely start executing the statement.

A simple approach that doesn’t involve any new concepts is the use of a flag variable. Suppose
flag is a shared int that is set to 0 by the main thread. Further, suppose we add the following code
to our example:

1 y = Compute ( my_rank ) ;
2 whi le ( flag != my_rank ) ;
3 x = x + y ;
4 flag ++;

Let’s suppose that thread 1 finishes the assignment in Line 1 before thread 0. What happens when
it reaches the while statement in Line 2? If you look at the while statement for a minute, you’ll see
that it has the somewhat peculiar property that its body is empty. So if the test flag != my_rank is
true, then thread 1 will just execute the test a second time. In fact, it will keep re-executing the test
until the test is false. When the test is false, thread 1 will go on to execute the code in the critical
section x = x + y.

Since we’re assuming that the main thread has initialized flag to 0, thread 1 won’t proceed
to the critical section in Line 3 until thread 0 executes the statement flag++. In fact, we see that
unless some catastrophe befalls thread 0, it will eventually catch up to thread 1. However, when
thread 0 executes its first test of flag != my_rank, the condition is false, and it will go on to execute
the code in the critical section x = x + y. When it’s done with this, we see that it will execute
flag++, and thread 1 can finally enter the critical section.

The key here is that thread 1 cannot enter the critical section until thread 0 has completed the
execution of flag++. And, provided the statements are executed exactly as they’re written, this
means that thread 1 cannot enter the critical section until thread 0 has completed it.

The while loop is an example of busy-waiting. In busy-waiting, a thread repeatedly tests a
condition, but, effectively, does no useful work until the condition has the appropriate value (false
in our example).

Note that we said that the busy-wait solution would work “provided the statements are executed
exactly as they’re written.” If compiler optimization is turned on, it is possible that the compiler
will make changes that will affect the correctness of busy-waiting. The reason for this is that the
compiler is unaware that the program is multithreaded, so it doesn’t “know” that the variables x

and flag can be modified by another thread. For example, if our code

y = Compute ( my_rank ) ;
whi le ( flag != my_rank ) ;
x = x + y ;
flag ++;
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is run by just one thread, the order of the statements while (flag != my_rank) and x = x + y is
unimportant. An optimizing compiler might therefore determine that the program would make
better use of registers if the order of the statements were switched. Of course, this will result in the
code

y = Compute ( my_rank ) ;
x = x + y ;
whi le ( flag != my_rank ) ;
flag ++;

which defeats the purpose of the busy-wait loop. The simplest solution to this problem is to turn
compiler optimizations off when we use busy-waiting. For an alternative to completely turning off
optimizations, see Exercise 3.

We can immediately see that busy-waiting is not an ideal solution to the problem of controlling
access to a critical section. Since thread 1 will execute the test over and over until thread 0 executes
flag++, if thread 0 is delayed (for example, if the operating system preempts it to run something
else), thread 1 will simply “spin” on the test, eating up CPU cycles. This approach — often called
a spinlock — can be positively disastrous for performance. Turning off compiler optimizations can
also seriously degrade performance.

Before going on, though, let’s return to our π calculation program in Figure 1.3 and correct it
by using busy-waiting. The critical section in this function is Line 15. We can therefore precede
this with a busy-wait loop. However, when a thread is done with the critical section, if it simply
increments flag, eventually flag will be greater than t, the number of threads, and none of the
threads will be able to return to the critical section. That is, after executing the critical section
once, all the threads will be stuck forever in the busy-wait loop. Thus, in this instance, we don’t
want to simply increment flag. Rather, the last thread, thread t−1, should reset flag to zero. This
can be accomplished by replacing flag++ with

flag = ( flag + 1) % thread_count ;

With this change, we get the thread function shown in Program 1.4. If we compile the program and
run it with two threads, we see that it is computing the correct results. However, if we add in code
for computing elapsed time, we see that when n = 108, the serial sum is consistently faster than the
parallel sum. For example, on the dual-core system, the elapsed time for the sum as computed by
two threads is about 19.5 seconds, while the elapsed time for the serial sum is about 2.8 seconds!

Why is this? Of course, there’s overhead associated with starting up and joining the threads.
However, we can estimate this overhead by writing a Pthreads program in which the thread function
simply returns:

void * Thread_function ( void * ignore ) {
re turn NULL ;

} / * T h r e a d f u n c t i o n * /
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1 void * Thread_sum ( void * rank ) {
2 long my_rank = ( long ) rank ;
3 double factor ;
4 long long i ;
5 long long my_n = n / thread_count ;
6 long long my_first_i = my_n*my_rank ;
7 long long my_last_i = my_first_i + my_n ;
8
9 i f ( my_first_i % 2 == 0)

10 factor = 1 . 0 ;
11 e l s e
12 factor = − 1 . 0 ;
13
14 f o r ( i = my_first_i ; i < my_last_i ; i++ , factor = −factor ) {
15 whi le ( flag != my_rank ) ;
16 sum += factor / ( 2 * i + 1 ) ;
17 flag = ( flag +1) % thread_count ;
18 }
19
20 re turn NULL ;
21 } / * Thread sum * /

Program 1.4: Pthreads global sum with busy-waiting
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When we find the time that’s elapsed between starting the first thread and joining the second thread,
we see that on this particular system, the overhead is less than 0.3 milliseconds, so the slowdown
isn’t due to thread overhead. If we look closely at the thread function that uses busy-waiting, we
see that the threads alternate between executing the critical section code in Line 16. Initially flag

is 0, so thread 1 must wait until thread 0 executes the critical section and increments flag. Then,
thread 0 must wait until thread 1 executes and increments. The threads will alternate between
waiting and executing, and evidently the waiting and the incrementing increase the overall run
time by a factor of seven.

As we’ll see, busy-waiting isn’t the only solution to protecting a critical section. In fact, there
are much better solutions. However, since the code in a critical section can only be executed by
one thread at a time, no matter how we limit access to the critical section, we’ll effectively serialize
the code in the critical section. Therefore, if it’s at all possible, we should minimize the number
of times we execute critical section code. One way to greatly improve the performance of the sum
function is to have each thread use a private variable to store its total contribution to the sum. Then,
each thread can add in its contribution to the global sum once, after the for loop. See Program 1.5.
When we run this on the dual core system with n = 108, the elapsed time is reduced to 1.5 seconds
for two threads, a substantial improvement.

1.6 Mutexes
Since a thread that is busy-waiting may continually use the CPU, busy-waiting is generally not
an ideal solution to the problem of limiting access to a critical section. Two better solutions are
mutexes and semaphores. Mutex is an abbreviation of mutual exclusion, and a mutex is a special
type of variable that, together with a couple of special functions, can be used to restrict access to a
critical section to a single thread at a time. Thus, a mutex can be used to guarantee that one thread
“excludes” all other threads while it executes the critical section. Hence, the mutex guarantees
mutually exclusive access to the critical section.

The Pthreads standard includes a special type for mutexes: pthread_mutex_t. A variable of
type pthread_mutex_t needs to be initialized by the system before it’s used. This can be done with
a call to

i n t pthread_mutex_init (
pthread_mutex_t* mutex_p / * o u t * / ,
c o n s t pthread_mutexattr_t* attr_p / * i n * / ) ;

We won’t make use of the second argument, so we’ll just pass in NULL to use the default attributes.
You may also occasionally encounter the following static mutex initialization that declares a mutex
and initializes it in a single line of code:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER ;
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void * Thread_sum ( void * rank ) {
long my_rank = ( long ) rank ;
double factor , my_sum = 0 . 0 ;
long long i ;
long long my_n = n / thread_count ;
long long my_first_i = my_n*my_rank ;
long long my_last_i = my_first_i + my_n ;

i f ( my_first_i % 2 == 0)
factor = 1 . 0 ;

e l s e
factor = − 1 . 0 ;

f o r ( i = my_first_i ; i < my_last_i ; i++ , factor = −factor )
my_sum += factor / ( 2 * i + 1 ) ;

whi le ( flag != my_rank ) ;
sum += my_sum ;
flag = ( flag +1) % thread_count ;

re turn NULL ;
} / * Thread sum * /

Program 1.5: Global sum function with critical section after loop
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Although in general pthread_mutex_init is more flexible, this initialization is fine in many, if not
most, cases.

When a Pthreads program finishes using a mutex (regardless of how they are initalized), it
should call

i n t pthread_mutex_destroy ( pthread_mutex_t* mutex_p / * i n / o u t * / ) ;

The point of a mutex is to protect a critical section from being entered by more than one thread at
a time. In order to gain access to a critical section, a thread will lock the mutex, do its work, and
then unlock the mutex to let other threads execute the critical section. To lock the mutex and gain
exclusive access to the critical section, a thread calls

i n t pthread_mutex_lock ( pthread_mutex_t* mutex_p / * i n / o u t * / ) ;

When a thread is finished executing the code in a critical section, it should call

i n t pthread_mutex_unlock ( pthread_mutex_t* mutex_p / * i n / o u t * / ) ;

The call to pthread_mutex_lock will cause the thread to wait until no other thread is in the crit-
ical section, and the call to pthread_mutex_unlock notifies the system that the calling thread has
completed execution of the code in the critical section.

We can use mutexes instead of busy-waiting in our global sum program by declaring a global
mutex variable, having the main thread initialize it, and then, instead of busy-waiting and incre-
menting a flag, the threads call pthread_mutex_lock before entering the critical section, and they
call pthread_mutex_unlock when they’re done with the critical section. See Program 1.6. The first
thread to call pthread_mutex_lock will, effectively, “lock the door” to the critical section: any other
thread that attempts to execute the critical section code must first also call pthread_mutex_lock,
and until the first thread calls pthread_mutex_unlock, all the threads that have called pthread_mutex_lock

will block in their calls—they’ll just wait until the first thread is done. After the first thread calls
pthread_mutex_unlock, the system will choose one of the blocked threads and allow it to execute
the code in the critical section. This process will be repeated until all the threads have completed
executing the critical section.

“Locking” and “unlocking” the door to the critical section isn’t the only metaphor that’s used
in connection with mutexes. Programmers often say that the thread that has returned from a call
to pthread_mutex_lock has “obtained the mutex” or “obtained the lock.” When this terminology
is used, a thread that calls pthread_mutex_unlock relinquishes the mutex or lock. (You may also
encounter terminology referring to this as “acquiring” and “releasing” the lock).

Notice that with mutexes (unlike our busy-waiting solution), the order in which the threads exe-
cute the code in the critical section is more or less random: the first thread to call pthread_mutex_lock
will be the first to execute the code in the critical section. Subsequent accesses will be scheduled by
the system. Pthreads doesn’t guarantee that the threads will obtain the lock in the order in which
they called Pthread_mutex_lock. However, in our setting, a finite number of threads will try to
acquire the lock and they are guaranteed to eventually obtain it.
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1 void * Thread_sum ( void * rank ) {
2 long my_rank = ( long ) rank ;
3 double factor ;
4 long long i ;
5 long long my_n = n / thread_count ;
6 long long my_first_i = my_n*my_rank ;
7 long long my_last_i = my_first_i + my_n ;
8 double my_sum = 0 . 0 ;
9

10 i f ( my_first_i % 2 == 0)
11 factor = 1 . 0 ;
12 e l s e
13 factor = − 1 . 0 ;
14
15 f o r ( i = my_first_i ; i < my_last_i ; i++ , factor = −factor ) {
16 my_sum += factor / ( 2 * i + 1 ) ;
17 }
18 pthread_mutex_lock (&mutex ) ;
19 sum += my_sum ;
20 pthread_mutex_unlock (&mutex ) ;
21
22 re turn NULL ;
23 } / * Thread sum * /

Program 1.6: Global sum function that uses a mutex
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Threads Busy-Wait Mutex
1 2.90 2.90
2 1.45 1.45
4 0.73 0.73
8 0.38 0.38

16 0.50 0.38
32 0.80 0.40
64 3.56 0.38

Table 1.1: Run-times (in seconds) of π programs using n = 108 terms on a system with two four-
core processors

If we look at the (unoptimized) performance of the busy-wait π program (with the critical
section after the loop) and the mutex program, we see that for both versions the ratio of the run
time of the single-threaded program with the multithreaded program is equal to the number of
threads, as long as the number of threads is no greater than the number of cores. That is,

Tserial
Tparallel

≈ thread count,

provided thread_count is less than or equal to the number of cores. Recall that Tserial/Tparallel
is called the speedup, and when the speedup is equal to the number of threads, we have achieved
more or less “ideal” performance or linear speedup.

If we compare the performance of the version that uses busy-waiting with the version that uses
mutexes, we don’t see much difference in the overall run time when the programs are run with
fewer threads than cores. This shouldn’t be surprising, as each thread only enters the critical section
once; unless the critical section is very long, or the Pthreads functions are very slow, we wouldn’t
expect the threads to be delayed very much by waiting to enter the critical section. However, if we
start increasing the number of threads beyond the number of cores, the performance of the version
that uses mutexes remains largely unchanged, while the performance of the busy-wait version
degrades. See Table 1.1.

We see that when we use busy-waiting, performance can degrade if there are more threads than
cores.5 This should make sense. For example, suppose we have two cores and five threads. Also
suppose that thread 0 is in the critical section, thread 1 is in the busy-wait loop, and threads 2, 3,
and 4 have been descheduled by the operating system. After thread 0 completes the critical section
and sets flag = 1, it will be terminated, and thread 1 can enter the critical section so the operating

5These are typical run-times. When using busy-waiting and the number of threads is greater than the number of
cores, the run-times vary considerably.
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Thread
Time flag 0 1 2 3 4

0 0 crit sect busy wait susp susp susp
1 1 terminate crit sect susp busy wait susp
2 2 — terminate susp busy wait busy wait
...

...
...

...
...

? 2 — — crit sect susp busy wait

Table 1.2: Possible sequence of events with busy-waiting and more threads than cores

system can schedule thread 2, thread 3, or thread 4. Suppose it schedules thread 3, which will
spin in the while loop. When thread 1 finishes the critical section and sets flag = 2, the operating
system can schedule thread 2 or thread 4. If it schedules thread 4, then both thread 3 and thread 4,
will be busily spinning in the busy-wait loop until the operating system deschedules one of them
and schedules thread 2. See Table 1.2.

1.7 Producer-Consumer Synchronization and Semaphores
Although busy-waiting is generally wasteful of CPU resources, it does have the property that we
know, in advance, the order in which the threads will execute the code in the critical section:
thread 0 is first, then thread 1, then thread 2, and so on. With mutexes, the order in which the
threads execute the critical section is left to chance and the system. Since addition is commutative,
this doesn’t matter in our program for estimating π. However, it’s not difficult to think of situations
in which we also want to control the order in which the threads execute the code in the critical
section. For example, suppose each thread generates an n×n matrix, and we want to multiply the
matrices together in thread-rank order. Since matrix multiplication isn’t commutative, our mutex
solution would have problems:

/ * n and p r o d u c t m a t r i x are sh are d and i n i t i a l i z e d by t h e main t h r e a d * /
/ * p r o d u c t m a t r i x i s i n i t i a l i z e d t o be t h e i d e n t i t y m a t r i x * /
void * Thread_work ( void * rank ) {

long my_rank = ( long ) rank ;
matrix_t my_mat = Allocate_matrix ( n ) ;
Generate_matrix ( my_mat ) ;
pthread_mutex_lock (&mutex ) ;
Multiply_matrix ( product_mat , my_mat ) ;
pthread_mutex_unlock (&mutex ) ;
Free_matrix (&my_mat ) ;
re turn NULL ;



1.7. PRODUCER-CONSUMER SYNCHRONIZATION AND SEMAPHORES 27

} / * Thread work * /

A somewhat more complicated example involves having each thread “send a message” to an-
other thread. For example, suppose we have thread_count or t threads and we want thread 0 to
send a message to thread 1, thread 1 to send a message to thread 2, . . . , thread t − 2 to send a
message to thread t−1 and thread t−1 to send a message to thread 0. After a thread “receives” a
message, it can print the message and terminate. In order to implement the message transfer, we
can allocate a shared array of char*. Then each thread can allocate storage for the message it’s
sending, and, after it has initialized the message, set a pointer in the shared array to refer to it. In
order to avoid dereferencing undefined pointers, the main thread can set the individual entries in
the shared array to NULL. See Program 1.7. When we run the program with more than a couple of

1 / * messages has t y p e char * * . I t ’ s a l l o c a t e d i n main . * /
2 / * Each e n t r y i s s e t t o NULL i n main . * /
3 void *Send_msg ( void * rank ) {
4 long my_rank = ( long ) rank ;
5 long dest = ( my_rank + 1) % thread_count ;
6 long source = ( my_rank + thread_count − 1) % thread_count ;
7 char * my_msg = malloc ( MSG_MAX* s i z e o f ( char ) ) ;
8
9 sprintf ( my_msg , "Hello to %ld from %ld" , dest , my_rank ) ;

10 messages [ dest ] = my_msg ;
11
12 i f ( messages [ my_rank ] != NULL )
13 printf ( "Thread %ld > %s\n" , my_rank , messages [ my_rank ] ) ;
14 e l s e
15 printf ( "Thread %ld > No message from %ld\n" , my_rank , source ) ;
16
17 re turn NULL ;
18 } / * Send msg * /

Program 1.7: A first attempt at sending messages using pthreads

threads on a dual core system, we see that some of the messages are never received. For example,
thread 0, which is started first, will typically finish before thread t−1 has copied the message into
the messages array.

This isn’t surprising, and we could fix the problem by replacing the if statement in Line 12
with a busy-wait while statement:

whi le ( messages [ my_rank ] == NULL ) ;
printf ( "Thread %ld > %s\n" , my_rank , messages [ my_rank ] ) ;
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Of course, this solution would have the same problems that any busy-waiting solution has, so we’d
prefer a different approach.

After executing the assignment in Line 10, we’d like to “notify” the thread with rank dest that
it can proceed to print the message. We’d like to do something like this:

. . .
messages [ dest ] = my_msg ;
Notify thread dest that it can proceed ;

Await notification from thread source
printf ( "Thread %ld > %s\n" , my_rank , messages [ my_rank ] ) ;
. . .

It’s not at all clear how mutexes can help here. We might try calling pthread_mutex_unlock to
“notify” the thread dest. However, mutexes are initialized to be unlocked, so we’d need to add a
call before initializing messages[dest] to lock the mutex. This will be a problem since we don’t
know when the threads will reach the calls to pthread_mutex_lock.

To make this a little clearer, suppose that the main thread creates and initializes an array of
mutexes, one for each thread. Then we’re trying to do something like this:

1 . . .
2 pthread_mutex_lock (&mutex [ dest ] ) ;
3 . . .
4 messages [ dest ] = my_msg ;
5 pthread_mutex_unlock (&mutex [ dest ] ) ;
6 . . .
7 pthread_mutex_lock (&mutex [ my_rank ] ) ;
8 printf ( "Thread %ld > %s\n" , my_rank , messages [ my_rank ] ) ;
9 . . .

Now suppose we have two threads, and thread 0 gets so far ahead of thread 1 that it reaches the
second call to pthread_mutex_lock in Line 7 before thread 1 reaches the first in Line 2. Then, of
course, it will acquire the lock and continue to the printf statement. This will result in thread 0
dereferencing a null pointer and it will crash.

There are other approaches to solving this problem with mutexes. See, for example, Exercise 8.
However, POSIX® also provides a somewhat different means of controlling access to critical sec-
tions: semaphores. Let’s take a look at them.

A semaphore can be thought of as a special type of unsigned int, so they take on the values 0,
1, 2, . . . . In many cases, we’ll only be interested in using them when they take on the values 0
and 1. A semaphore that only takes on these values is called a binary semaphore. Very roughly
speaking, 0 corresponds to a locked mutex, and 1 corresponds to an unlocked mutex. To use a
binary semaphore as a mutex, you initialize it to 1: “unlocked.” Before the critical section you
want to protect, you place a call to the function sem_wait. A thread that executes sem_wait will
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block if the semaphore is 0. If the semaphore is nonzero, it will decrement the semaphore and
proceed. After executing the code in the critical section, a thread calls sem_post, which increments
the semaphore and a thread waiting in sem_wait can proceed.

Semaphores were first defined by the computer scientist Edsger Dijkstra in [?]. The name is
taken from the mechanical device that railroads use to control which train can use a track. The
device consists of an arm attached by a pivot to a post. When the arm points down, approaching
trains can proceed, and when the arm is perpendicular to the post, approaching trains must stop
and wait. The track corresponds to the critical section: when the arm is down corresponds to a
semaphore of 1, and when the arm is up corresponds to a semaphore of 0. The sem_wait and
sem_post calls correspond to signals sent by the train to the semaphore controller.

For our current purposes, the crucial difference between semaphores and mutexes is that there
is no ownership associated with a semaphore. The main thread can initialize all of the semaphores
to 0—that is, “locked”—and then any thread can execute a sem_post on any of the semaphores.
Similarly, any thread can execute sem_wait on any of the semaphores. Thus, if we use semaphores,
our Send_msg function can be written as shown in Program 1.8.

1 / * messages i s a l l o c a t e d and i n i t i a l i z e d t o NULL i n main * /
2 / * semaphores i s a l l o c a t e d and i n i t i a l i z e d t o 0 ( l o c k e d ) i n main * /
3 void *Send_msg ( void * rank ) {
4 long my_rank = ( long ) rank ;
5 long dest = ( my_rank + 1) % thread_count ;
6 char * my_msg = malloc ( MSG_MAX* s i z e o f ( char ) ) ;
7
8 sprintf ( my_msg , "Hello to %ld from %ld" , dest , my_rank ) ;
9 messages [ dest ] = my_msg ;

10 sem_post (&semaphores [ dest ] ) ; / * ‘ ‘ Unlock ’ ’ t h e semaphore o f d e s t * /
11
12 / * Wait f o r our semaphore t o be u n l o c k e d * /
13 sem_wait (&semaphores [ my_rank ] ) ;
14 printf ( "Thread %ld > %s\n" , my_rank , messages [ my_rank ] ) ;
15
16 re turn NULL ;
17 } / * Send msg * /

Program 1.8: Using semaphores so that threads can send messages

The syntax of the various semaphore functions is

i n t sem_init (
sem_t* semaphore_p / * o u t * / ,
i n t shared / * i n * / ,
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unsigned initial_val / * i n * / ) ;

i n t sem_destroy ( sem_t* semaphore_p / * i n / o u t * / ) ;
i n t sem_post ( sem_t* semaphore_p / * i n / o u t * / ) ;
i n t sem_wait ( sem_t* semaphore_p / * i n / o u t * / ) ;

The second argument to sem_init controls whether the semaphore is shared among threads or
processes. In our examples, we’ll be sharing the semaphore among threads, so the constant 0 can
be passed in.

Note that semaphores are part of the POSIX® standard, but not part of Pthreads. Hence it
is necessary to ensure your operating system does indeed support semaphores, and then add the
following preprocessor directive to any program that uses them:6

#include <semaphore . h>

Finally, note that the message-sending problem didn’t involve a critical section. The problem
wasn’t that there was a block of code that could only be executed by one thread at a time. Rather,
thread my_rank couldn’t proceed until thread source had finished creating the message. This type
of synchronization, when a thread can’t proceed until another thread has taken some action, is
sometimes called producer-consumer synchronization. For example, imagine a producer thread
that generates tasks and places them in a fixed-size queue (or bounded buffer) for a consumer
thread to execute. In this case, the consumer blocks until at least one task is ready, at which point it
will be signaled by the producer. Once signaled, the work is carried out by the thread in isolation;
no critical section is involved. This paradigm is seen in stream processing, web servers, and so
on; in the case of a web server, the producer thread could listen for incoming request URIs and
place them in the queue, while the consumer would be responsible for reading the corresponding
file from disk (e.g., http://server/file.txt might be located at /www/file.txt on the web
server’s file system) and sending data back to the client that requested the URI.

As mentioned earlier, binary semaphores (those that only take on the values 0 and 1) are fairly
typical. However, counting semaphores can also be useful in scenarios where we wish to restrict
access to a finite resource. One common example is an application design pattern that involves
limiting the number of threads used by a program to be no more than the number of cores available
on a given machine. Consider a program with a workload of N tasks, where N is much greater than
the available cores. In this case, the main thread is responsible for distributing the workload and
would initialize its semaphore with the number of cores available, and then call sem_wait before
starting each worker thread with pthread_create. Once the counter reaches 0, the main thread
will block; the machine has a task running for each core and the program must wait for a thread to
finish before starting more. When a thread does finish its task, it will call sem_post to signal that

6Some systems, including macOS, don’t support this version of semaphores. However, they may support some-
thing called “named” semaphores. The functions sem_wait and sem_post can be used in the same way. How-
ever, sem_init should be replaced by sem_open, and sem_destroy should be replaced by sem_close and
sem_unlink. See the book’s website for an example.
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the main thread can create another worker thread. For this approach to be efficient, the amount of
time spent on each task much be longer than the thread creation overhead because N total threads
will be started during the program’s execution. For an approach that reuses existing threads in a
thread pool, see Programming Assignment 5.

1.8 Barriers and Condition Variables
Let’s take a look at another problem in shared-memory programming: synchronizing the threads
by making sure that they all are at the same point in a program. Such a point of synchronization
is called a barrier because no thread can proceed beyond the barrier until all the threads have
reached it.

Barriers have numerous applications. As we discussed in Chapter ?? if we’re timing some part
of a multithreaded program, we’d like for all the threads to start the timed code at the same instant,
and then report the time taken by the last thread to finish, i.e., the “slowest” thread. So we’d like
to do something like this:

/ * Shared * /
double elapsed_time ;
. . .
/ * P r i v a t e * /
double my_start , my_finish , my_elapsed ;
. . .
Synchronize threads ;
Store current time in my_start ;
/ * E x e c u t e t i m e d code * /
. . .
Store current time in my_finish ;
my_elapsed = my_finish − my_start ;

elapsed = Maximum of my_elapsed values ;

Using this approach, we’re sure that all of the threads will record my_start at approximately the
same time.

Another very important use of barriers is in debugging. As you’ve probably already seen, it can
be very difficult to determine where an error is occurring in a parallel program. We can, of course,
have each thread print a message indicating which point it’s reached in the program, but it doesn’t
take long for the volume of the output to become overwhelming. Barriers provide an alternative:

point in program we want to reach ;
barrier ;
i f ( my_rank == 0) {

printf ( "All threads reached this point\n" ) ;
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fflush ( stdout ) ;
}

Many implementations of Pthreads don’t provide barriers, so if our code is to be portable, we
need to develop our own implementation. There are a number of options; we’ll look at three. The
first two only use constructs that we’ve already studied. The third uses a new type of Pthreads
object: a condition variable.

1.8.1 Busy-waiting and a Mutex

Implementing a barrier using busy-waiting and a mutex is straightforward: we use a shared counter
protected by the mutex. When the counter indicates that every thread has entered the critical
section, threads can leave the busy-wait loop.

/ * Shared and i n i t i a l i z e d by t h e main t h r e a d * /
i n t counter ; / * I n i t i a l i z e t o 0 * /
i n t thread_count ;
pthread_mutex_t barrier_mutex ;
. . .

void * Thread_work ( . . . ) {
. . .
/ * B a r r i e r * /
pthread_mutex_lock (&barrier_mutex ) ;
counter ++;
pthread_mutex_unlock (&barrier_mutex ) ;
whi le ( counter < thread_count ) ;
. . .

}

Of course, this implementation will have the same problems that our other busy-wait codes
had: we’ll waste CPU cycles when threads are in the busy-wait loop, and, if we run the program
with more threads than cores, we may find that the performance of the program seriously degrades.

Another issue is the shared variable counter. What happens if we want to implement a second
barrier and we try to reuse the counter? When the first barrier is completed, counter will have the
value thread_count. Unless we can somehow reset counter, the while condition we used for our
first barrier counter < thread_count will be false, and the barrier won’t cause the threads to block.
Furthermore any attempt to reset counter to zero is almost certainly doomed to failure. If the last
thread to enter the loop tries to reset it, some thread in the busy-wait may never see the fact that
counter == thread_count, and that thread may hang in the busy-wait. If some thread tries to reset
the counter after the barrier, some other thread may enter the second barrier before the counter is
reset and its increment to the counter will be lost. This will have the unfortunate effect of causing
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all the threads to hang in the second busy-wait loop. So if we want to use this barrier, we need one
counter variable for each instance of the barrier.

1.8.2 Semaphores
A natural question is whether we can implement a barrier with semaphores, and, if so, whether
we can reduce the number of problems we encountered with busy-waiting. The answer to the first
question is yes:

/ * Shared v a r i a b l e s * /
i n t counter ; / * I n i t i a l i z e t o 0 * /
sem_t count_sem ; / * I n i t i a l i z e t o 1 * /
sem_t barrier_sem ; / * I n i t i a l i z e t o 0 * /
. . .
void * Thread_work ( . . . ) {

. . .
/ * B a r r i e r * /
sem_wait (&count_sem ) ;
i f ( counter == thread_count −1) {

counter = 0 ;
sem_post (&count_sem ) ;
f o r ( j = 0 ; j < thread_count −1; j++)

sem_post (&barrier_sem ) ;
} e l s e {

counter ++;
sem_post (&count_sem ) ;
sem_wait (&barrier_sem ) ;

}
. . .

}

As with the busy-wait barrier, we have a counter that we use to determine how many threads
have entered the barrier. We use two semaphores: count_sem protects the counter, and barrier_sem

is used to block threads that have entered the barrier. The count_sem semaphore is initialized to
1 (that is, “unlocked”), so the first thread to reach the barrier will be able to proceed past the
call to sem_wait. Subsequent threads, however, will block until they can have exclusive access
to the counter. When a thread has exclusive access to the counter, it checks to see if counter <

thread_count-1. If it is, the thread increments counter, relinquishes the lock (sem_post(&count_sem)),
and blocks in sem_wait(&barrier_sem). On the other hand, if counter == thread_count-1, the
thread is the last to enter the barrier, so it can reset counter to zero and “unlock” count_sem by
calling sem_post(&count_sem). Now, it wants to notify all the other threads that they can proceed,
so it executes sem_post(&barrier_sem) for each of the thread_count-1 threads that are blocked in
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sem_wait(&barrier_sem).
Note that it doesn’t matter if the thread executing the loop of calls to sem_post(&barrier_sem)

races ahead and executes multiple calls to sem_post before a thread can be unblocked from sem_wait(&barrier_sem).
Recall that a semaphore is an unsigned int , and the calls to sem_post increment it, while the
calls to sem_wait decrement it—unless it’s already 0. If it’s 0, the calling threads will block un-
til it’s positive again. Therefore, it doesn’t matter if the thread executing the loop of calls to
sem_post(&barrier_sem) gets ahead of the threads blocked in the calls to sem_wait(&barrier_sem),
because eventually the blocked threads will see that barrier_sem is positive, and they’ll decrement
it and proceed.

It should be clear that this implementation of a barrier is superior to the busy-wait barrier, since
the threads don’t need to consume CPU cycles when they’re blocked in sem_wait. Can we reuse
the data structures from the first barrier if we want to execute a second barrier?

The counter can be reused, since we were careful to reset it before releasing any of the threads
from the barrier. Also, count_sem can be reused, since it is reset to 1 before any threads can leave
the barrier. This leaves barrier_sem. Since there’s exactly one sem_post for each sem_wait, it
might appear that the value of barrier_sem will be 0 when the threads start executing a second bar-
rier. However, suppose we have two threads, and thread 0 is blocked in sem_wait(&barrier_sem)
in the first barrier, while thread 1 is executing the loop of calls to sem_post. Also suppose that
the operating system has seen that thread 0 is idle, and descheduled it out. Then thread 1 can go
on to the second barrier. Since counter == 0, it will execute the else clause. After incrementing
counter, it executes sem_post(&count_sem), and then executes sem_wait(&barrier_sem).

However, if thread 0 is still descheduled, it will not have decremented barrier_sem. Thus when
thread 1 reaches sem_wait(&barrier_sem), barrier_sem will still be 1, so it will simply decrement
barrier_sem and proceed. This will have the unfortunate consequence that when thread 0 starts
executing again, it will still be blocked in the first sem_wait(&barrier_sem), and thread 1 will
proceed through the second barrier before thread 0 has entered it. Reusing barrier_sem therefore
results in a race condition.

1.8.3 Condition Variables

A somewhat better approach to creating a barrier in Pthreads is provided by condition variables. A
condition variable is a data object that allows a thread to suspend execution until a certain event
or condition occurs. When the event or condition occurs another thread can signal the thread to
“wake up.” A condition variable is always associated with a mutex.

Typically, condition variables are used in constructs similar to this pseudocode:

lock mutex ;
i f condition has occurred

signal thread ( s ) ;
e l s e {
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unlock the mutex and block ;
/ * when t h r e a d i s unb locked , mutex i s r e l o c k e d * /

}
unlock mutex ;

Condition variables in Pthreads have type pthread_cond_t. The function

i n t pthread_cond_signal ( pthread_cond_t* cond_var_p / * i n / o u t * / ) ;

will unblock one of the blocked threads, and

i n t pthread_cond_broadcast ( pthread_cond_t* cond_var_p / * i n / o u t * / ) ;

will unblock all of the blocked threads. This is one advantage of condition variables; recall that we
needed a for loop calling sem_post to achieve similar functionality with semaphores. The function

i n t pthread_cond_wait (
pthread_cond_t* cond_var_p / * i n / o u t * / ,
pthread_mutex_t* mutex_p / * i n / o u t * / ) ;

will unlock the mutex referred to by mutex_p and cause the executing thread to block until it is
unblocked by another thread’s call to pthread_cond_signal or pthread_cond_broadcast. When
the thread is unblocked, it reacquires the mutex. So in effect, pthread_cond_wait implements the
following sequence of functions:

pthread_mutex_unlock (&mutex_p ) ;
wait_on_signal (&cond_var_p ) ;
pthread_mutex_lock (&mutex_p ) ;

The following code implements a barrier with a condition variable:

/ * Shared * /
i n t counter = 0 ;
pthread_mutex_t mutex ;
pthread_cond_t cond_var ;
. . .
void * Thread_work ( . . . ) {

. . .
/ * B a r r i e r * /
pthread_mutex_lock (&mutex ) ;
counter ++;
i f ( counter == thread_count ) {

counter = 0 ;
pthread_cond_broadcast (&cond_var ) ;

} e l s e {
whi le ( pthread_cond_wait (&cond_var , &mutex ) != 0 ) ;

}
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pthread_mutex_unlock (&mutex ) ;
. . .

}

Note that it is possible that events other than the call to pthread_cond_broadcast can cause a sus-
pended thread to unblock (see, for example, Butenhof [?], page 80). This is called a spurious wake-
up. Hence, the call to pthread_cond_wait should usually be placed in a while loop. If the thread is
unblocked by some event other than a call to pthread_cond_signal or pthread_cond_broadcast,
then the return value of pthread_cond_wait will be nonzero, and the unblocked thread will call
pthread_cond_wait again.

If a single thread is being awakened, it’s also a good idea to check that the condition has, in
fact, been satisfied before proceeding. In our example, if a single thread were being released from
the barrier with a call to pthread_cond_signal, then that thread should verify that counter == 0
before proceeding. This can be dangerous with the broadcast, though. After being awakened, some
thread may race ahead and change the condition, and if each thread is checking the condition, a
thread that awakened later may find the condition is no longer satisfied and go back to sleep.

Note that in order for our barrier to function correctly, it’s essential that the call to pthread_cond_wait

unlock the mutex. If it didn’t unlock the mutex, then only one thread could enter the barrier; all of
the other threads would block in the call to pthread_mutex_lock, the first thread to enter the barrier
would block in the call to pthread_cond_wait, and our program would hang.

Also note that the semantics of mutexes require that the mutex be relocked before we re-
turn from the call to pthread_cond_wait. We obtained the lock when we returned from the call
to pthread_mutex_lock. Hence, we should at some point relinquish the lock through a call to
pthread_mutex_unlock.

Like mutexes and semaphores, condition variables should be initialized and destroyed. In this
case, the functions are

i n t pthread_cond_init (
pthread_cond_t* cond_p / * o u t * / ,
c o n s t pthread_condattr_t* cond_attr_p / * i n * / ) ;

i n t pthread_cond_destroy ( pthread_cond_t* cond_p / * i n / o u t * / ) ;

We won’t be using the second argument to pthread_cond_init — as with mutexes, the default the
attributes are fine for our purposes — so we’ll call it with second argument set to NULL. As usual,
there is also a static version of the initializer if we are planning to use the default attributes:

pthread_cond_t cond = PTHREAD_COND_INITIALIZER ;

Condition variables are often quite useful whenever a thread needs to wait for something. When
protected application state cannot be represented by an unsigned integer counter, condition vari-
ables may be preferable to semaphores.
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Figure 1.4: A linked list

1.8.4 Pthreads Barriers
Before proceeding we should note that the Open Group, the standards group that is continuing to
develop the POSIX® standard, does define a barrier interface for Pthreads. However, as we noted
earlier, it is not universally available, so we haven’t discussed it in the text. See Exercise 10 for
some of the details of the API.

1.9 Read-Write Locks
Let’s take a look at the problem of controlling access to a large, shared data structure, which can
be either simply searched or updated by the threads. For the sake of explicitness, let’s suppose the
shared data structure is a sorted, singly-linked list of ints, and the operations of interest are Member,
Insert, and Delete.

1.9.1 Sorted linked list functions
The list itself is composed of a collection of list nodes, each of which is a struct with two members:
an int and a pointer to the next node. We can define such a struct with the definition

s t r u c t list_node_s {
i n t data ;
s t r u c t list_node_s* next ;

}

A typical list is shown in Figure 1.4. A pointer, head_p, with type struct list_node_s* refers to
the first node in the list. The next member of the last node is NULL (which is indicated by a slash
(/ ) in the next member).

The Member function (Program 1.9) uses a pointer to traverse the list until it either finds the
desired value or determines that the desired value cannot be in the list. Since the list is sorted, the
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latter condition occurs when the curr_p pointer is NULL or when the data member of the current
node is larger than the desired value.

1 i n t Member ( i n t value , s t r u c t list_node_s* head_p ) {
2 s t r u c t list_node_s* curr_p = head_p ;
3
4 whi le ( curr_p != NULL && curr_p−>data < value )
5 curr_p = curr_p−>next ;
6
7 i f ( curr_p == NULL | | curr_p−>data > value ) {
8 re turn 0 ;
9 } e l s e {

10 re turn 1 ;
11 }
12 } / * Member * /

Program 1.9: The Member function

The Insert function (Program 1.10) begins by searching for the correct position in which to
insert the new node. Since the list is sorted, it must search until it finds a node whose data member
is greater than the value to be inserted. When it finds this node, it needs to insert the new node in
the position preceding the node that’s been found. Since the list is singly-linked, we can’t “back
up” to this position without traversing the list a second time. There are several approaches to
dealing with this; the approach we use is to define a second pointer pred_p, which, in general,
refers to the predecessor of the current node. When we exit the loop that searches for the position
to insert, the next member of the node referred to by pred_p can be updated so that it refers to the
new node. See Figure 1.5.

The Delete function (Program 1.11) is similar to the Insert function in that it also needs to
keep track of the predecessor of the current node while it’s searching for the node to be deleted.
The predecessor node’s next member can then be updated after the search is completed. See
Figure 1.6.

1.9.2 A Multithreaded Linked List

Now let’s try to use these functions in a Pthreads program. In order to share access to the list,
we can define head_p to be a global variable. This will simplify the function headers for Member,
Insert, and Delete, since we won’t need to pass in either head_p or a pointer to head_p, we’ll only
need to pass in the value of interest. What now are the consequences of having multiple threads
simultaneously execute the three functions?
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1 i n t Insert ( i n t value , s t r u c t list_node_s** head_pp ) {
2 s t r u c t list_node_s* curr_p = *head_pp ;
3 s t r u c t list_node_s* pred_p = NULL ;
4 s t r u c t list_node_s* temp_p ;
5
6 whi le ( curr_p != NULL && curr_p−>data < value ) {
7 pred_p = curr_p ;
8 curr_p = curr_p−>next ;
9 }

10
11 i f ( curr_p == NULL | | curr_p−>data > value ) {
12 temp_p = malloc ( s i z e o f ( s t r u c t list_node_s ) ) ;
13 temp_p−>data = value ;
14 temp_p−>next = curr_p ;
15 i f ( pred_p == NULL ) / * New f i r s t node * /
16 *head_pp = temp_p ;
17 e l s e
18 pred_p−>next = temp_p ;
19 re turn 1 ;
20 } e l s e { / * Value a l r e a d y i n l i s t * /
21 re turn 0 ;
22 }
23 } / * I n s e r t * /

Program 1.10: The Insert function
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Figure 1.5: Inserting a new node into a list
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Figure 1.6: Deleting a node from the list
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1 i n t Delete ( i n t value , s t r u c t list_node_s** head_pp ) {
2 s t r u c t list_node_s* curr_p = *head_pp ;
3 s t r u c t list_node_s* pred_p = NULL ;
4
5 whi le ( curr_p != NULL && curr_p−>data < value ) {
6 pred_p = curr_p ;
7 curr_p = curr_p−>next ;
8 }
9

10 i f ( curr_p != NULL && curr_p−>data == value ) {
11 i f ( pred_p == NULL ) { / * D e l e t i n g f i r s t node i n l i s t * /
12 *head_pp = curr_p−>next ;
13 free ( curr_p ) ;
14 } e l s e {
15 pred_p−>next = curr_p−>next ;
16 free ( curr_p ) ;
17 }
18 re turn 1 ;
19 } e l s e { / * Value i s n ’ t i n l i s t * /
20 re turn 0 ;
21 }
22 } / * D e l e t e * /

Program 1.11: The Delete function
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Figure 1.7: Simultaneous access by two threads

Since multiple threads can simultaneously read a memory location without conflict, it should
be clear that multiple threads can simultaneously execute Member. On the other hand, Delete and
Insert also write to memory locations, so there may be problems if we try to execute either of
these operations at the same time as another operation. As an example, suppose that thread 0 is
executing Member(5) at the same time that thread 1 is executing Delete(5), and the current state of
the list is shown in Figure 1.7. An obvious problem is that if thread 0 is executing Member(5), it is
going to report that 5 is in the list, when, in fact, it may be deleted even before thread 0 returns.
A second obvious problem is if thread 0 is executing Member(8), thread 1 may free the memory
used for the node storing 5 before thread 0 can advance to the node storing 8. Although typical
implementations of free don’t overwrite the freed memory, if the memory is reallocated before
thread 0 advances, there can be serious problems. For example, if the memory is reallocated for
use in something other than a list node, what thread 0 “thinks” is the next member may be set to
utter garbage, and after it executes

curr_p = curr_p−>next ;

dereferencing curr_p may result in a segmentation violation.
More generally, we can run into problems if we try to simultaneously execute another operation

while we’re executing an Insert or a Delete. It’s OK for multiple threads to simultaneously
execute Member—that is, read the list nodes—but it’s unsafe for multiple threads to access the list
if at least one of the threads is executing an Insert or a Delete—that is, is writing to the list nodes
(see Exercise 12).
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How can we deal with this problem? An obvious solution is to simply lock the list any time that
a thread attempts to access it. For example, a call to each of the three functions can be protected
by a mutex, so we might execute

Pthread_mutex_lock (&list_mutex ) ;
Member ( value ) ;
Pthread_mutex_unlock (&list_mutex ) ;

instead of simply calling Member(value).
An equally obvious problem with this solution is that we are serializing access to the list, and

if the vast majority of our operations are calls to Member, we’ll fail to exploit this opportunity for
parallelism. On the other hand, if most of our operations are calls to Insert and Delete, then this
may be the best solution, since we’ll need to serialize access to the list for most of the operations,
and this solution will certainly be easy to implement.

An alternative to this approach involves “finer-grained” locking. Instead of locking the entire
list, we could try to lock individual nodes. We would add, for example, a mutex to the list node
struct:

s t r u c t list_node_s {
i n t data ;
s t r u c t list_node_s* next ;
pthread_mutex_t mutex ;

}

Now each time we try to access a node we must first lock the mutex associated with the node.
Note that this will also require that we have a mutex associated with the head_p pointer. So, for
example, we might implement Member as shown in Program 1.12. Admittedly this implementation
is much more complex than the original Member function. It is also much slower, since, in general,
each time a node is accessed, a mutex must be locked and unlocked. At a minimum it will add
two function calls to the node access, but it can also add a substantial delay if a thread has to wait
for a lock. A further problem is that the addition of a mutex field to each node will substantially
increase the amount of storage needed for the list. On the other hand, the finer-grained locking
might be a closer approximation to what we want. Since we’re only locking the nodes of current
interest, multiple threads can simultaneously access different parts of the list, regardless of which
operations they’re executing.

1.9.3 Pthreads Read-Write Locks
Neither of our multithreaded linked lists exploits the potential for simultaneous access to any node
by threads that are executing Member. The first solution only allows one thread to access the entire
list at any instant, and the second only allows one thread to access any given node at any instant.
An alternative is provided by Pthreads’ read-write locks. A read-write lock is somewhat like a
mutex except that it provides two lock functions. The first lock function locks the read-write lock
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i n t Member ( i n t value ) {
s t r u c t list_node_s* temp_p ;

pthread_mutex_lock (&head_p_mutex ) ;
temp_p = head_p ;
whi le ( temp_p != NULL && temp_p−>data < value ) {

i f ( temp_p−>next != NULL )
pthread_mutex_lock (&( temp_p−>next−>mutex ) ) ;

i f ( temp_p == head_p )
pthread_mutex_unlock (&head_p_mutex ) ;

pthread_mutex_unlock (&( temp_p−>mutex ) ) ;
temp_p = temp_p−>next ;

}

i f ( temp_p == NULL | | temp_p−>data > value ) {
i f ( temp_p == head_p )

pthread_mutex_unlock (&head_p_mutex ) ;
i f ( temp_p != NULL )

pthread_mutex_unlock (&( temp_p−>mutex ) ) ;
re turn 0 ;

} e l s e {
i f ( temp_p == head_p )

pthread_mutex_unlock (&head_p_mutex ) ;
pthread_mutex_unlock (&( temp_p−>mutex ) ) ;
re turn 1 ;

}
} / * Member * /

Program 1.12: Implementation of Member with one mutex per list node
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for reading, while the second locks it for writing. Multiple threads can thereby simultaneously
obtain the lock by calling the read-lock function, while only one thread can obtain the lock by
calling the write-lock function. Thus, if any threads own the lock for reading, any threads that
want to obtain the lock for writing will block in the call to the write-lock function. Furthermore, if
any thread owns the lock for writing, any threads that want to obtain the lock for reading or writing
will block in their respective locking functions.

Using Pthreads read-write locks, we can protect our linked list functions with the following
code (we’re ignoring function return values):

pthread_rwlock_rdlock (&rwlock ) ;
Member ( value ) ;
pthread_rwlock_unlock (&rwlock ) ;
. . .
pthread_rwlock_wrlock (&rwlock ) ;
Insert ( value ) ;
pthread_rwlock_unlock (&rwlock ) ;
. . .
pthread_rwlock_wrlock (&rwlock ) ;
Delete ( value ) ;
pthread_rwlock_unlock (&rwlock ) ;

The syntax for the new Pthreads functions is

i n t pthread_rwlock_rdlock ( pthread_rwlock_t* rwlock_p / * i n / o u t * / ) ;
i n t pthread_rwlock_wrlock ( pthread_rwlock_t* rwlock_p / * i n / o u t * / ) ;
i n t pthread_rwlock_unlock ( pthread_rwlock_t* rwlock_p / * i n / o u t * / ) ;

As their names suggest, the first function locks the read-write lock for reading, the second locks it
for writing, and the last unlocks it.

As with mutexes, read-write locks should be initialized before use and destroyed after use. The
following function can be used for initialization:

i n t pthread_rwlock_init (
pthread_rwlock_t* rwlock_p / * o u t * / ,
c o n s t pthread_rwlockattr_t* attr_p / * i n * / ) ;

/ * And , t h e s t a t i c v e r s i o n : * /
pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER ;

Also as with mutexes, we’ll not use the second argument, so we’ll just pass NULL. The following
function can be used for destruction of a read-write lock:

i n t pthread_rwlock_destroy ( pthread_rwlock_t* rwlock_p / * i n / o u t * / ) ;
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Number of Threads
Implementation 1 2 4 8
Read-Write Locks 0.213 0.123 0.098 0.115
One Mutex for Entire List 0.211 0.450 0.385 0.457
One Mutex per Node 1.680 5.700 3.450 2.700

Table 1.3: Linked list times: 100,000 ops/thread, 99.9% Member, 0.05% Insert, 0.05% Delete

Number of Threads
Implementation 1 2 4 8
Read-Write Locks 2.48 4.97 4.69 4.71
One Mutex for Entire List 2.50 5.13 5.04 5.11
One Mutex per Node 12.00 29.60 17.00 12.00

Table 1.4: Linked List Times: 100,000 ops/thread, 80% Member, 10% Insert, 10% Delete

1.9.4 Performance of the Various Implementations

Of course, we really want to know which of the three implementations is “best,” so we included our
implementations in a small program in which the main thread first inserts a user-specified number
of randomly generated keys into an empty list. After being started by the main thread, each thread
carries out a user-specified number of operations on the list. The user also specifies the percentages
of each type of operation (Member, Insert, Delete). However, which operation occurs when and on
which key is determined by a random number generator. Thus, for example, the user might specify
that 1,000 keys should be inserted into an initially empty list and a total of 100,000 operations
are to be carried out by the threads. Further, she might specify that 80% of the operations should
be Member, 15% should be Insert, and the remaining 5% should be Delete. However, since the
operations are randomly generated, it might happen that the threads execute a total of, say, 79,000
calls to Member, 15,500 calls to Insert, and 5500 calls to Delete.

Tables 1.3 and 1.4 show the times (in seconds) that it took for 100,000 operations on a list that
was initialized to contain 1000 keys. Both sets of data were taken on a system containing four
dual-core processors.

Table 1.3 shows the times when 99.9% of the operations are Member and the remaining 0.1%
are divided equally between Insert and Delete. Table 1.4 shows the times when 80% of the
operations are Member, 10% are Insert, and 10% are Delete. Note that in both tables when one
thread is used, the run times for the read-write locks and the single-mutex implementations are
about the same. This makes sense: the operations are serialized, and since there is no contention
for the read-write lock or the mutex, the overhead associated with both implementations should
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consist of a function call before the list operation and a function call after the operation. On the
other hand, the implementation that uses one mutex per node is much slower. This also makes sense
since each time a single node is accessed there will be two function calls—one to lock the node
mutex and one to unlock it. Thus, there’s considerably more overhead for this implementation.

The inferiority of the implementation that uses one mutex per node persists when we use multi-
ple threads. There is far too much overhead associated with all the locking and unlocking to make
this implementation competitive with the other two implementations.

Perhaps the most striking difference between the two tables is the relative performance of the
read-write lock implementation and the single-mutex implementation when multiple threads are
used. When there are very few Inserts and Deletes, the read-write lock implementation is far
better than the single-mutex implementation. Since the single-mutex implementation will serialize
all the operations, this suggests that if there are very few Inserts and Deletes, the read-write locks
do a very good job of allowing concurrent access to the list. On the other hand, if there are a rela-
tively large number of Inserts and Deletes (for example, 10% each), there’s very little difference
between the performance of the read-write lock implementation and the single-mutex implemen-
tation. Thus, for linked list operations, read-write locks can provide a considerable increase in
performance, but only if the number of Inserts and Deletes is quite small.

Also notice that if we use one mutex or one mutex per node, the program is always as fast or
faster when it’s run with one thread. Furthermore, when the number of Inserts and Deletes is
relatively large, the read-write lock program is also faster with one thread. This isn’t surprising for
the one mutex implementation, since effectively accesses to the list are serialized. For the read-
write lock implementation, it appears that when there are a substantial number of write locks, there
is too much contention for the locks and overall performance deteriorates significantly.

In summary, the read-write lock implementation is superior to the single mutex and one mutex
per node implementations. However, unless the number of Inserts and Deletes is small, a serial
implementation will be superior.

1.9.5 Implementing read-write locks
The original Pthreads specification didn’t include read-write locks, so some of the early texts de-
scribing Pthreads include implementations of read-write locks (see, for example, [?]). A typical
implementation7 defines a data structure that uses two condition variables—one for “readers” and
one for “writers”—and a mutex. The structure also contains members that indicate

1. how many readers own the lock, that is, are currently reading,

2. how many readers are waiting to obtain the lock,

3. whether a writer owns the lock, and
7This discussion follows the basic outline of Butenhof’s implementation [?].
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4. how many writers are waiting to obtain the lock.

The mutex protects the read-write lock data structure: whenever a thread calls one of the func-
tions (read-lock, write-lock, unlock), it first locks the mutex, and whenever a thread completes one
of these calls, it unlocks the mutex. After acquiring the mutex, the thread checks the appropriate
data members to determine how to proceed. As an example, if it wants read-access, it can check
to see if there’s a writer that currently owns the lock. If not, it increments the number of active
readers and proceeds. If a writer is active, it increments the number of readers waiting and starts a
condition wait on the reader condition variable. When it’s awakened, it decrements the number of
readers waiting, increments the number of active readers, and proceeds. The write-lock function
has an implementation that’s similar to the read-lock function.

The action taken in the unlock function depends on whether the thread was a reader or a writer.
If the thread was a reader, there are no currently active readers, and there’s a writer waiting, then
it can signal a writer to proceed before returning. If, on the other hand, the thread was a writer,
there can be both readers and writers waiting, so the thread needs to decide whether it will give
preference to readers or writers. Since writers must have exclusive access, it is likely that it is
much more difficult for a writer to obtain the lock. Many implementations therefore give writers
preference. Programming Assignment 6 explores this further.

1.10 Caches, Cache-Coherence, and False Sharing8

Recall that for a number of years now, computers have been able to execute operations involving
only the processor much faster than they can access data in main memory. If a processor must
read data from main memory for each operation, it will spend most of its time simply waiting for
the data from memory to arrive. Also recall that in order to address this problem, chip designers
have added blocks of relatively fast memory to processors. This faster memory is called cache
memory.

The design of cache memory takes into consideration the principles of temporal and spatial
locality: if a processor accesses main memory location x at time t, then it is likely that at times
close to t it will access main memory locations close to x. Thus, if a processor needs to access main
memory location x, rather than transferring only the contents of x to/from main memory, a block
of memory containing x is transferred from/to the processor’s cache. Such a block of memory is
called a cache line or cache block.

In Section ??, we saw that the use of cache memory can have a huge impact on shared-memory.
Let’s recall why. First, consider the following situation: Suppose x is a shared variable with the
value five, and both thread 0 and thread 1 read x from memory into their (separate) caches, because
both want to execute the statement

8This material is also covered in Chapter ??. So if you’ve already read that chapter, you may want to skim this
section.
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my_y = x ;

Here, my_y is a private variable defined by both threads. Now suppose thread 0 executes the state-
ment

x++;

Finally, suppose that thread 1 now executes

my_z = x ;

where my_z is another private variable.
What’s the value in my_z? Is it five? Or is it six? The problem is that there are (at least) three

copies of x: the one in main memory, the one in thread 0’s cache, and the one in thread 1’s cache.
When thread 0 executed x++, what happened to the values in main memory and thread 1’s cache?
This is the cache coherence problem, which we discussed in Chapter ??. We saw there that most
systems insist that the caches be made aware that changes have been made to data they are caching.
The line in the cache of thread 1 would have been marked invalid when thread 0 executed x++, and
before assigning my_z = x, the core running thread 1 would see that its value of x was out of date.
Thus, the core running thread 0 would have to update the copy of x in main memory (either now
or earlier), and the core running thread 1 would get the line with the updated value of x from main
memory. For further details, see Chapter ??.

The use of cache coherence can have a dramatic effect on the performance of shared-memory
systems. To illustrate this, recall our Pthreads matrix-vector multiplication example: the main
thread initialized an m×n matrix A and an n-dimensional vector x. Each thread was responsible for
computing m/t components of the product vector y = Ax. (As usual, t is the number of threads.)
The data structures representing A, x, y, m, and n were all shared. For ease of reference, we
reproduce the code in Program 1.13.

If Tserial is the run time of the serial program and Tparallel is the run time of the parallel
program, recall that the efficiency E of the parallel program is the speedup S divided by the number
of threads:

E =
S
t
=

(
Tserial

Tparallel

)
t

=
Tserial

t×Tparallel
.

Since S≤ t, E ≤ 1. Table 1.5 shows the run-times and efficiencies of our matrix-vector multiplica-
tion with different sets of data and differing numbers of threads.

In each case, the total number of floating point additions and multiplications is 64,000,000; so
an analysis that only considers arithmetic operations would predict that a single thread running the
code would take the same amount of time for all three inputs. However, it’s clear that this is not the
case. With one thread, the 8,000,000× 8 system requires about 14% more time than the 8000×
8000 system, and the 8× 8,000,000 system requires about 28% more time than the 8000× 8000
system. Both of these differences are at least partially attributable to cache performance



50 CHAPTER 1. SHARED-MEMORY PROGRAMMING WITH PTHREADS

1 void *Pth_mat_vect ( void * rank ) {
2 long my_rank = ( long ) rank ;
3 i n t i , j ;
4 i n t local_m = m / thread_count ;
5 i n t my_first_row = my_rank*local_m ;
6 i n t my_last_row = ( my_rank +1)* local_m − 1 ;
7
8 f o r ( i = my_first_row ; i <= my_last_row ; i++) {
9 y [ i ] = 0 . 0 ;

10 f o r ( j = 0 ; j < n ; j++)
11 y [ i ] += A [ i ] [ j ]* x [ j ] ;
12 }
13
14 re turn NULL ;
15 } / * P t h m a t v e c t * /

Program 1.13: Pthreads matrix-vector multiplication

Matrix Dimension
8,000,000×8 8000×8000 8×8,000,000

Threads Time Eff. Time Eff. Time Eff.
1 0.393 1.000 0.345 1.000 0.441 1.000
2 0.217 0.906 0.188 0.918 0.300 0.735
4 0.139 0.707 0.115 0.750 0.388 0.290

Table 1.5: Run-times and efficiencies of matrix-vector multiplication (times are in seconds)
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Recall that a write-miss occurs when a core tries to update a variable that’s not in the cache,
and it has to access main memory. A cache profiler (such as Valgrind [?]) shows that when the
program is run with the 8,000,000×8 input, it has far more cache write-misses than either of the
other inputs. The bulk of these occur in Line 9. Since the number of elements in the vector y is
far greater in this case (8,000,000 vs. 8000 or 8), and each element must be initialized, it’s not
surprising that this line slows down the execution of the program with the 8,000,000×8 input.

Also recall that a read-miss occurs when a core tries to read a variable that’s not in the cache,
and it has to access main memory. A cache profiler shows that when the program is run with the
8×8,000,000 input, it has far more cache read-misses than either of the other inputs. These occur
in Line 11, and a careful study of this program (see Exercise 16) shows that the main source of
the differences is due to the reads of x. Once again, this isn’t surprising, since for this input, x has
8,000,000 elements, versus only 8000 or 8 for the other inputs.

It should be noted that there may be other factors that are affecting the relative performance
of the single-threaded program with the differing inputs. For example, we haven’t taken into
consideration whether virtual memory (see Subsection ??) has affected the performance of the
program with the different inputs. How frequently does the CPU need to access the page table in
main memory?

Of more interest to us, though, is the tremendous difference in efficiency as the number of
threads is increased. The two-thread efficiency of the program with the 8× 8,000,000 input is
nearly 20% less than the efficiency of the program with the 8,000,000× 8 and the 8000× 8000
inputs. The four-thread efficiency of the program with the 8× 8,000,000 input is nearly 60%
less than the program’s efficiency with the 8,000,000× 8 input and more than 60% less than
the program’s efficiency with the 8000× 8000 input. These dramatic decreases in efficiency are
even more remarkable when we note that with one thread the program is much slower with 8×
8,000,000 input. Therefore, the numerator in the formula for the efficiency:

Parallel Efficiency =
Serial Run-Time

(Number of Threads)× (Parallel Run-Time)

will be much larger. Why, then, is the multithreaded performance of the program so much worse
with the 8×8,000,000 input?

In this case, once again, the answer has to do with cache. Let’s take a look at the program when
we run it with four threads. With the 8,000,000× 8 input, y has 8,000,000 components, so each
thread is assigned 2,000,000 components. With the 8000× 8000 input, each thread is assigned
2000 components of y, and with the 8× 8,000,000 input, each thread is assigned 2 components.
On the system we used, a cache line is 64 bytes. Since the type of y is double, and a double is 8
bytes, a single cache line can store 8 doubles.

Cache coherence is enforced at the “cache-line level.” That is, each time any value in a
cache line is written, if the line is also stored in another processor’s cache, the entire line will
be invalidated—not just the value that was written. The system we’re using has two dual-core
processors and each processor has its own cache. Suppose for the moment that threads 0 and 1 are
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assigned to one of the processors and threads 2 and 3 are assigned to the other. Also suppose that
for the 8× 8,000,000 problem all of y is stored in a single cache line. Then every write to some
element of y will invalidate the line in the other processor’s cache. For example, each time thread
0 updates y[0] in the statement

y [ i ] += A [ i ] [ j ]* x [ j ] ;

If thread 2 or 3 is executing this code, it will have to reload y. Each thread will update each of
its components 8,000,000 times. We see that with this assignment of threads to processors and
components of y to cache lines, all the threads will have to reload y many times. This is going to
happen in spite of the fact that only one thread accesses any one component of y—for example,
only thread 0 accesses y[0].

Each thread will update its assigned components of y a total of 16,000,000 times. It appears
that many if not most of these updates are forcing the threads to access main memory. This is called
false sharing. Suppose two threads with separate caches access different variables that belong to
the same cache line. Further suppose at least one of the threads updates its variable. Then even
though neither thread has written to a variable that the other thread is using, the cache controller
invalidates the entire cache line and forces the threads to get the values of the variables from main
memory. The threads aren’t sharing anything (except a cache line), but the behavior of the threads
with respect to memory access is the same as if they were sharing a variable, hence the name false
sharing.

Why is false sharing not a problem with the other inputs? Let’s look at what happens with the
8000×8000 input. Suppose thread 2 is assigned to one of the processors and thread 3 is assigned
to another. (We don’t actually know which threads are assigned to which processors, but it turns
out—see Exercise 17—that it doesn’t matter.) Thread 2 is responsible for computing

y [ 4 0 0 0 ] , y [ 4 0 0 1 ] , . . . , y [ 5 9 9 9 ] ,

and thread 3 is responsible for computing

y [ 6 0 0 0 ] , y [ 6 0 0 1 ] , . . . , y [ 7 9 9 9 ] .

If a cache line contains 8 consecutive doubles, the only possibility for false sharing is on the
interface between their assigned elements. If, for example, a single cache line contains

y [ 5 9 9 6 ] , y [ 5 9 9 7 ] , y [ 5 9 9 8 ] , y [ 5 9 9 9 ] , y [ 6 0 0 0 ] , y [ 6 0 0 1 ] , y [ 6 0 0 2 ] , y [ 6 0 0 3 ] ,

then it’s conceivable that there might be false sharing of this cache line. However, thread 2 will
access

y [ 5 9 9 6 ] , y [ 5 9 9 7 ] , y [ 5 9 9 8 ] , y [ 5 9 9 9 ]

at the end of its for i loop, while thread 3 will access

y [ 6 0 0 0 ] , y [ 6 0 0 1 ] , y [ 6 0 0 2 ] , y [ 6 0 0 3 ]

at the beginning of its for i loop. So it’s very likely that when thread 2 accesses (say) y[5996],
thread 3 will be long done with all four of
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y [ 6 0 0 0 ] , y [ 6 0 0 1 ] , y [ 6 0 0 2 ] , y [ 6 0 0 3 ] .

Similarly, when thread 3 accesses, say, y[6003], it’s very likely that thread 2 won’t be anywhere
near starting to access

y [ 5 9 9 6 ] , y [ 5 9 9 7 ] , y [ 5 9 9 8 ] , y [ 5 9 9 9 ] .

It’s therefore unlikely that false sharing of the elements of y will be a significant problem with
the 8000×8000 input. Similar reasoning suggests that false sharing of y is unlikely to be a problem
with the 8,000,000×8 input. Also note that we don’t need to worry about false sharing of A or x,
since their values are never updated by the matrix-vector multiplication code.

This brings up the question of how we might avoid false sharing in our matrix-vector multipli-
cation program. One possible solution is to “pad” the y vector with dummy elements in order to
insure that any update by one thread won’t affect another thread’s cache line. Another alternative
is to have each thread use its own private storage during the multiplication loop, and then update
the shared storage when they’re done. See Exercise 19.

1.11 Thread-Safety9

Let’s look at another potential problem that occurs in shared-memory programming: thread-safety.
A block of code is thread-safe if it can be simultaneously executed by multiple threads without
causing problems.

As an example, suppose we want to use multiple threads to “tokenize” a file. Let’s suppose
that the file consists of ordinary English text, and that the tokens are just contiguous sequences
of characters separated from the rest of the text by white space—a space, a tab, or a newline. A
simple approach to this problem is to divide the input file into lines of text and assign the lines to
the threads in a round-robin fashion: the first line goes to thread 0, the second goes to thread 1, . . . ,
the tth goes to thread t, the t +1st goes to thread 0, and so on.

We can serialize access to the lines of input using semaphores. Then, after a thread has read
a single line of input, it can tokenize the line. One way to do this is to use the strtok function in
string.h, which has the following prototype:

char * strtok (
char * string / * i n / o u t * / ,
c o n s t char * separators / * i n * / ) ;

Its usage is a little unusual: the first time it’s called the string argument should be the text to be
tokenized, so in our example it should be the line of input. For subsequent calls, the first argument
should be NULL. The idea is that in the first call, strtok

caches a pointer to string, and for subsequent calls it returns successive tokens taken from the

9This material is also covered in Chapter ??. So if you’ve already read that chapter, you may want to skim this
section.
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cached copy. The characters that delimit tokens should be passed in separators. We should pass in
the string " \t\n" as the separators

argument.

1 void *Tokenize ( void * rank ) {
2 long my_rank = ( long ) rank ;
3 i n t count ;
4 i n t next = ( my_rank + 1) % thread_count ;
5 char *fg_rv ;
6 char my_line [ MAX ] ;
7 char *my_string ;
8
9 sem_wait (&sems [ my_rank ] ) ;

10 fg_rv = fgets ( my_line , MAX , stdin ) ;
11 sem_post (&sems [ next ] ) ;
12 whi le ( fg_rv != NULL ) {
13 printf ( "Thread %ld > my line = %s" , my_rank , my_line ) ;
14
15 count = 0 ;
16 my_string = strtok ( my_line , " \t\n" ) ;
17 whi le ( my_string != NULL ) {
18 count ++;
19 printf ( "Thread %ld > string %d = %s\n" , my_rank , count ,
20 my_string ) ;
21 my_string = strtok ( NULL , " \t\n" ) ;
22 }
23
24 sem_wait (&sems [ my_rank ] ) ;
25 fg_rv = fgets ( my_line , MAX , stdin ) ;
26 sem_post (&sems [ next ] ) ;
27 }
28
29 re turn NULL ;
30 } / * T o k e n i z e * /

Program 1.14: A first attempt at a multithreaded tokenizer

Given these assumptions, we can write the thread function shown in Program 1.14. The main
thread has initialized an array of t semaphores—one for each thread. Thread 0’s semaphore is ini-
tialized to 1. All the other semaphores are
initialized to 0. So the code in Lines 9 to 11 will force the threads to sequentially access the
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lines of input. Thread 0 will immediately read the first line, but all the other threads will block
in sem_wait. When thread 0 executes the sem_post, thread 1 can read a line of input. After each
thread has read its first line of input (or end-of-file), any additional input is read in lines 24 to 26.
The fgets function reads a single line of input and lines 15 to 22 identify the tokens in the line.
When we run the program with a single thread, it correctly tokenizes the input stream. The first
time we run it with two threads and the input

Pease porridge hot.
Pease porridge cold.
Pease porridge in the pot
Nine days old.

the output is also correct. However, the second time we run it with this input, we get the following
output.

Thread 0 > my line = Pease porridge hot.
Thread 0 > string 1 = Pease
Thread 0 > string 2 = porridge
Thread 0 > string 3 = hot.
Thread 1 > my line = Pease porridge cold.
Thread 0 > my line = Pease porridge in the pot
Thread 0 > string 1 = Pease
Thread 0 > string 2 = porridge
Thread 0 > string 3 = in
Thread 0 > string 4 = the
Thread 0 > string 5 = pot
Thread 1 > string 1 = Pease
Thread 1 > my line = Nine days old.
Thread 1 > string 1 = Nine
Thread 1 > string 2 = days
Thread 1 > string 3 = old.

What happened? Recall that strtok caches the input line. It does this by declaring a variable to
have static storage class. This causes the value stored in this variable to persist from one call to
the next. Unfortunately for us, this cached string is shared, not private. Thus, thread 0’s call to
strtok with the third line of the input has apparently overwritten the contents of thread 1’s call
with the second line.

The strtok function is not thread-safe: if multiple threads call it simultaneously, the output it
produces may not be correct. Regrettably, it’s not uncommon for C library functions to fail to be
thread-safe. For example, neither the random number generator random in stdlib.h nor the time
conversion function localtime in
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time.h is thread-safe. In some cases, the C standard specifies an alternate, thread-safe, version
of a function. In fact, there is a thread-safe version of strtok:

char * strtok_r (
char * string / * i n / o u t * / ,
c o n s t char * separators / * i n * / ,
char ** saveptr_p / * i n / o u t * / ) ;

The “_r” indicates the function is reentrant, which is sometimes used as a synonym for thread-
safe10. The first two arguments have the same purpose as the arguments to strtok. The saveptr_p

argument is used by strtok_r for keeping track of where the function is in the input string; it
serves the purpose of the cached pointer in strtok. We can correct our original Tokenize function
by replacing the calls to strtok with calls to strtok_r. We simply need to declare a char* variable
to pass in for the third argument, and replace the calls in line 16 and line 21 with the calls

my_string = strtok_r ( my_line , " \t\n" , &saveptr ) ;
. . .
my_string = strtok_r ( NULL , " \t\n" , &saveptr ) ;

respectively.

1.11.1 Incorrect programs can produce correct output

Notice that our original version of the tokenizer program shows an especially insidious form of
program error: the first time we ran it with two threads, the program produced correct output.
It wasn’t until a later run that we saw an error. This, unfortunately, is not a rare occurrence in
parallel programs. It’s especially common in shared-memory programs. Since, for the most part,
the threads are running independently of each other, as we noted earlier, the exact sequence of
statements executed is nondeterministic. For example, we can’t say when thread 1 will first call
strtok. If its first call takes place after thread 0 has tokenized its first line, then the tokens identified
for the first line should be correct. However, if thread 1 calls strtok before thread 0 has finished
tokenizing its first line, it’s entirely possible that thread 0 may not identify all the tokens in the
first line. Therefore, it’s especially important in developing shared-memory programs to resist the
temptation to assume that since a program produces correct output, it must be correct. We always
need to be wary of race conditions.

10However, the distinction is a bit more nuanced; being reentrant means a function can be interrupted and called
again (reentered) in different parts of a program’s control flow and still execute correctly. This can happen due to
nested calls to the function or a trap/interrupt sent from the operating system. Since strtok uses a single static
pointer to track its state while parsing, multiple calls to the function from different parts of a program’s control flow
will corrupt the string — therefore, it is not reentrant. It’s worth noting that although reentrant functions such as
strtok_r can also be thread safe, there is no guarantee reentrant function will always be thread safe (and vice versa).
It’s best to consult the documentation if in doubt.
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1.12 Summary
Like MPI, Pthreads is a library of functions that programmers can use to implement parallel pro-
grams. Unlike MPI, Pthreads is used to implement shared-memory parallelism.

A thread in shared-memory programming is analogous to a process in distributed-memory
programming. However, a thread is often lighter-weight than a full-fledged process.

We saw that in Pthreads programs, all the threads have access to global variables, while local
variables usually are private to the thread running the function. In order to use Pthreads, we should
include the pthread.h header file, and, when we compile our program, it may be necessary to link
our program with the Pthread library by adding −lpthread to the command line. We saw that we
can use the
functions pthread_create and pthread_join, respectively, to start and stop a thread function.

When multiple threads are executing, the order in which the statements are executed by the
different threads is usually nondeterministic. When nondeterminism results from multiple threads
attempting to access a shared resource such as a shared variable or a shared file, at least one of
the accesses is an update, and the accesses can result in an error, we have a race condition. One
of our most important tasks in writing shared-memory programs is identifying and correcting race
conditions. A critical section is a block of code that updates a shared resource that can only be
updated by one thread at a time, so the execution of code in a critical section should, effectively,
be executed as serial code. Thus, we should try to design our programs so that they use them as
infrequently as possible, and the critical sections we do use should be as short as possible.

We looked at three basic approaches to avoiding conflicting access to critical sections: busy-
waiting, mutexes, and semaphores. Busy-waiting can be done with a flag variable and a while loop
with an empty body. It can be very wasteful of CPU cycles. It can also be unreliable if compiler
optimization is turned on, so mutexes and semaphores are generally preferable.

A mutex can be thought of as a lock on a critical section, since mutexes arrange for mutually
exclusive access to a critical section. In Pthreads, a thread attempts to obtain a mutex with a call to
pthread_mutex_lock, and it relinquishes the mutex with a call to pthread_mutex_unlock. When a
thread attempts to obtain a mutex that is already in use, it blocks in the call to pthread_mutex_lock.
This means that it remains idle in the call to pthread_mutex_lock until the system gives it the lock.

A semaphore is an unsigned int together with two operations: sem_wait and sem_post.
If the semaphore is positive, a call to sem_wait simply decrements the semaphore, but if the
semaphore is zero, the calling thread blocks until the semaphore is positive, at which point the
semaphore is decremented and the thread returns from the call. The sem_post operation in-
crements the semaphore; a semaphore can be used as a mutex with sem_wait corresponding to
pthread_mutex_lock and sem_post corresponding to pthread_mutex_unlock. However, semaphores
are more powerful than mutexes since they can be initialized to any nonnegative value. Further-
more, since there is no “ownership” of a semaphore, any thread can “unlock” a locked semaphore.
We saw that semaphores can be easily used to implement producer-consumer synchronization.
In producer-consumer synchronization, a “consumer” thread waits for some condition or data cre-
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ated by a “producer” thread before proceeding. Semaphores are not part of Pthreads. In order to
use them, we need to include the semaphore.h header file.

A barrier is a point in a program at which the threads block until all of the threads have
reached it. We saw several different means for constructing barriers. One of them used a condition
variable. A condition variable is a special Pthreads object that can be used to suspend execution
of a thread until a condition has occurred. When the condition has occurred, another thread can
awaken the suspended thread with a condition signal or a condition broadcast.

The last Pthreads construct we looked at was a read-write lock. A read-write lock is used
when it’s safe for multiple threads to simultaneously read a data structure, but if a thread needs to
modify or write to the data structure, then only that thread can access the data structure during the
modification.

We recalled that modern microprocessor architectures use caches to reduce memory access
times, so typical architectures have special hardware to insure that the caches on the different chips
are coherent. Since the unit of cache coherence, a cache line or cache block, is usually larger
than a single word of memory, this can have the unfortunate side effect that two threads may be
accessing different memory locations, but when the two locations belong to the same cache line,
the cache-coherence hardware acts as if the threads were accessing the same memory location.
Thus, if one of the threads updates its memory location, and then the other thread tries to read its
memory location, it will have to retrieve the value from main memory. That is, the hardware is
forcing the thread to act as if it were actually sharing the memory location. Hence, this is called
false sharing, and it can seriously degrade the performance of a shared-memory program.

Some C functions cache data between calls by declaring variables to be static . This can cause
errors when multiple threads call the function; since static storage is shared among the threads, one
thread can overwrite another thread’s data. Such a function is not thread-safe, and, unfortunately,
there are several such functions in the C library. Sometimes, however, there is a thread-safe variant.

When we looked at the program that used the function that wasn’t thread-safe, we saw a par-
ticularly insidious problem: when we ran the program with multiple threads and a fixed set of
input, it sometimes produced correct output, even though the program was erroneous. This means
that even if a program produces correct output during testing, there’s no guarantee that it is in fact
correct–it’s up to us to identify possible race conditions.

1.13 Exercises
1. When we discussed matrix-vector multiplication we assumed that both m and n, the number

of rows and the number of columns, respectively, were evenly divisible by t, the number of
threads. How do the formulas for the assignments change if this is not the case?

2. If we decide to physically divide a data structure among the threads, that is, if we decide to
make various members local to individual threads, we need to consider at least three issues:
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(a) How are the members of the data structure used by the individual threads?

(b) Where and how is the data structure initialized?

(c) Where and how is the data structure used after its members are computed?

We briefly looked at the first issue in the matrix-vector multiplication function. We saw that
the entire vector x was used by all of the threads, so it seemed pretty clear that it should be
shared. However, for both the matrix A and the product vector y, just looking at (a) seemed
to suggest that A and y should have their components distributed among the threads. Let’s
take a closer look at this.

What would we have to do in order to divide A and y among the threads? Dividing y wouldn’t
be difficult–each thread could allocate a block of memory that could be used for storing its
assigned components. Presumably, we could do the same for A–each thread could allocate
a block of memory for storing its assigned rows. Modify the matrix-vector multiplication
program so that it distributes both of these data structures. Can you “schedule” the input
and output so that the threads can read in A and print out y? How does distributing A and
y affect the run-time of the matrix-vector multiplication? (Don’t include input or output in
your run-time.)

3. Recall that the compiler is unaware that an ordinary C program is multithreaded, and as a
consequence, it may make optimizations that can interfere with busy-waiting. (Note that
compiler optimizations should not affect mutexes, condition variables, or semaphores.) An
alternative to completely turning off compiler optimizations is to identify some shared vari-
ables with the C keyword volatile. This tells the compiler that these variables may be updated
by multiple threads and, as a consequence, it shouldn’t apply optimizations to statements in-
volving them. As an example, recall our busy-wait solution to the race condition when
multiple threads attempt to add a private variable into a shared variable:

/ * x and f l a g are shared , y i s p r i v a t e * /
/ * x and f l a g are i n i t i a l i z e d t o 0 by main t h r e a d * /

y = Compute ( my_rank ) ;
whi le ( flag != my_rank ) ;
x = x + y ;
flag ++;

It’s impossible to tell by looking at this code that the order of the while statement and the
x = x + y statement is important; if this code were single-threaded, the order of these two
statements wouldn’t affect the outcome of the code. But if the compiler determined that it
could improve register usage by interchanging the order of these two statements, the resulting
code would be erroneous.

If, instead of defining
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i n t flag ;
i n t x ;

we define

i n t v o l a t i l e flag ;
i n t v o l a t i l e x ;

then the compiler will know that both x and flag can be updated by other threads, so it
shouldn’t try reordering the statements.

With the gcc compiler, the default behavior is no optimization. You can make certain of
this by adding the option −O0 to the command line. Try running the π calculation program
that uses busy-waiting (pth_pi_busy.c) without optimization. How does the result of the
multithreaded calculation compare to the single-threaded calculation? Now try running it
with optimization; if you’re using gcc, replace the −O0 option with −O2. If you found an
error, how many threads did you use?

Which variables should be made volatile in the π calculation? Change these variables so that
they’re volatile and rerun the program with and without optimization. How do the results
compare to the single-threaded program?

4. The performance of the π calculation program that uses mutexes remains roughly constant
once we increase the number of threads beyond the number of available CPUs. What does
this suggest about how the threads are scheduled on the available processors?

5. Modify the mutex version of the π calculation program so that the critical section is in the for
loop. How does the performance of this version compare to the performance of the original
busy-wait version? How might we explain this?

6. Modify the mutex version of the π calculation program so that it uses a semaphore instead
of a mutex. How does the performance of this version compare with the mutex version?

7. Modify the Pthreads hello, world program to launch an unlimited number of threads—you
can effectively ignore the thread_count and instead call pthread_create in an infinite loop
(e.g., for (thread = 0; ; thread++)).

Note that in most cases the program will not create an unlimited number of threads; you’ll
observe that the “Hello from thread” messages stop after some time, depending on the con-
figuration of your system. How many threads were created before the messages stopped?

Observe that while nothing is being printed, the program is still running. To determine why
no new threads are being created, check the return value of the call to pthread_create (hint:
use the perror function to get a human-readable description of the problem, or look up the
error codes). What is the cause of this bug?
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Finally, modify the for loop containing pthread_create to detach each new thread using
pthread_detach. How many threads are created now?

8. Although producer-consumer synchronization is easy to implement with semaphores, it’s
also possible to implement it with mutexes. The basic idea is to have the producer and
the consumer share a mutex. A flag variable that’s initialized to false by the main thread
indicates whether there’s anything to consume. With two threads we’d execute something
like this:

whi le ( 1 ) {
pthread_mutex_lock (&mutex ) ;
i f ( my_rank == consumer ) {

i f ( message_available ) {
print message ;
pthread_mutex_unlock (&mutex ) ;
break ;

}
} e l s e { / * my rank == p r o d u c e r * /

create message ;
message_available = 1 ;
pthread_mutex_unlock (&mutex ) ;
break ;

}
pthread_mutex_unlock (&mutex ) ;

}

So if the consumer gets into the loop first, it will see there’s no message available and return
to the call to pthread_mutex_lock. It will continue this process until the producer creates
the message. Write a Pthreads program that implements this version of producer-consumer
synchronization with two threads. Can you generalize this so that it works with 2k threads–
odd-ranked threads are consumers and even-ranked threads are producers? Can you gener-
alize this so that each thread is both a producer and a consumer? For example, suppose that
thread q “sends” a message to thread (q+ 1) mod t and “receives” a message from thread
(q−1+ t) mod t? Does this use busy-waiting?

9. If a program uses more than one mutex, and the mutexes can be acquired in different orders,
the program can deadlock. That is, threads may block forever waiting to acquire one of
the mutexes. As an example, suppose that a program has two shared data structures–for
example, two arrays or two linked lists–each of which has an associated mutex. Further
suppose that each data structure can be accessed (read or modified) after acquiring the data
structure’s associated mutex.
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(a) Suppose the program is run with two threads. Further suppose that the following se-
quence of events occurs:

Time Thread 0 Thread 1
0 pthread mutex lock(&mut0) pthread mutex lock(&mut1)
1 pthread mutex lock(&mut1) pthread mutex lock(&mut0)

What happens?

(b) Would this be a problem if the program used busy-waiting (with two flag variables)
instead of mutexes?

(c) Would this be a problem if the program used semaphores instead of mutexes?

10. Some implementations of Pthreads define barriers. The function

i n t pthread_barrier_init (
pthread_barrier_t* barrier_p / * o u t * / ,
c o n s t pthread_barrierattr_t* attr_p / * i n * / ,
unsigned count / * i n * / ) ;

initializes a barrier object, barrier_p. As usual, we’ll ignore the second argument and just
pass in NULL. The last argument indicates the number of threads that must reach the barrier
before they can continue. The barrier itself is a call to the function

i n t pthread_barrier_wait ( pthread_barrier_t* barrier_p / * i n / o u t * / ) ;

As with most other Pthreads objects, there is a destroy function

i n t pthread_barrier_destroy ( pthread_barrier_t* barrier_p / * i n / o u t * / ) ;

Modify one of the barrier programs from the book’s website so that it uses a Pthreads barrier.
Find a system with a Pthreads implementation that includes barrier and run your program
with various numbers of threads. How does its performance compare to the other implemen-
tations?

11. Modify one of the programs you wrote in the Programming Assignments that follow so that
it uses the scheme outlined in Section 1.8 to time itself. In order to get the time that has
elapsed since some point in the past, you can use the macro GET_TIME defined in the header
file timer.h on the book’s website. Note that this will give wall clock time, not CPU time.
Also note that since it’s a macro, it can operate directly on its argument. For example, to
implement

Store current time in my_start ;

you would use
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GET_TIME ( my_start ) ;

not

GET_TIME (&my_start ) ;

How will you implement the barrier? How will you implement the following pseudocode?

elapsed = Maximum of my_elapsed values ;

12. Give an example of a linked list and a sequence of memory accesses to the linked list in
which the following pairs of operations can potentially result in problems:

(a) Two deletes executed simultaneously

(b) An insert and a delete executed simultaneously

(c) A member and a delete executed simultaneously

(d) Two inserts executed simultaneously

(e) An insert and a member executed simultaneously.

13. The linked list operations Insert and Delete consist of two distinct “phases.” In the first
phase, both operations search the list for either the position of the new node or the position
of the node to be deleted. If the outcome of the first phase so indicates, in the second phase
a new node is inserted or an existing node is deleted. In fact, it’s quite common for linked
list programs to split each of these operations into two function calls. For both operations,
the first phase involves only read-access to the list; only the second phase modifies the list.
Would it be safe to lock the list using a read-lock for the first phase? And then to lock the
list using a write-lock for the second phase? Explain your answer.

14. Download the various threaded linked list programs from the website. In our examples, we
ran a fixed percentage of searches and split the remaining percentage among inserts and
deletes.

(a) Rerun the experiments with all searches and all inserts.

(b) Rerun the experiments with all searches and all deletes.

Is there a difference in the overall run times? Is insert or delete more expensive?

15. Recall that in C a function that takes a two-dimensional array argument must specify the
number of columns in the argument list. Thus it is quite common for C programmers to
only use one-dimensional arrays, and to write explicit code for converting pairs of subscripts
into a single dimension. Modify the Pthreads matrix-vector multiplication so that it uses a
one-dimensional array for the matrix and calls a matrix-vector multiplication function. How
does this change affect the run time?
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16. Download the source file pth_mat_vect_rand_split.c from the book’s website. Find a pro-
gram that does cache profiling (for example, Valgrind [?]) and compile the program ac-
cording to the instructions in the cache profiler documentation. (with Valgrind you will
want a symbol table and full optimization (e.g., gcc −g −O2 . . .). Now run the program
according to the instructions in the cache profiler documentation, using input k× (k · 106),
(k · 103)× (k · 103), and (k · 106)× k. Choose k so large that the number of level 2 cache
misses is of the order 106 for at least one of the input sets of data.

(a) How many level 1 cache write-misses occur with each of the three inputs?

(b) How many level 2 cache write-misses occur with each of the three inputs?

(c) Where do most of the write-misses occur? For which input data does the program have
the most write-misses? Can you explain why?

(d) How many level 1 cache read-misses occur with each of the three inputs?

(e) How many level 2 cache read-misses occur with each of the three inputs?

(f) Where do most of the read-misses occur? For which input data does the program have
the most read-misses? Can you explain why?

(g) Run the program with each of the three inputs, but without using the cache profiler.
With which input is the program the fastest? With which input is the program the
slowest? Can your observations about cache misses help explain the differences? How?

17. Recall the matrix-vector multiplication example with the 8000× 8000 input. Suppose that
the program is run with four threads, and thread 0 and thread 2 are assigned to different
processors. If a cache line contains 64 bytes or eight doubles, is it possible for false sharing
between threads 0 and 2 to occur for any part of the vector y? Why? What about if thread
0 and thread 3 are assigned to different processors–is it possible for false sharing to occur
between them for any part of y?

18. Recall the matrix-vector multiplication example with an 8× 8,000,000 matrix. Suppose
that doubles use 8 bytes of memory and that a cache line is 64 bytes. Also suppose that our
system consists of two dual-core processors.

(a) What is the minimum number of cache lines that are needed to store the vector y?

(b) What is the maximum number of cache lines that are needed to store the vector y?

(c) If the boundaries of cache lines always coincide with the boundaries of 8-byte doubles,
in how many different ways can the components of y be assigned to cache lines?

(d) If we only consider which pairs of threads share a processor, in how many different
ways can four threads be assigned to the processors in our computer? Here we’re
assuming that cores on the same processor share cache.
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(e) Is there an assignment of components to cache lines and threads to processors that will
result in no false sharing in our example? In other words, is it possible that the threads
assigned to one processor will have their components of y in one cache line, and the
threads assigned to the other processor will have their components in a different cache
line?

(f) How many assignments of components to cache lines and threads to processors are
there?

(g) Of these assignments, how many will result in no false sharing?

19. (a) Modify the matrix-vector multiplication program so that it pads the vector y when
there’s a possibility of false sharing. The padding should be done so that if the threads
execute in lock-step, there’s no possibility that a single cache line containing an ele-
ment of y will be shared by two or more threads. Suppose, for example, that a cache
line stores eight doubles and we run the program with four threads. If we allocate stor-
age for at least 48 doubles in y, then, on each pass through the for i loop, there’s no
possibility that two threads will simultaneously access the same cache line.

(b) Modify the matrix-vector multiplication so that each thread uses private storage for its
part of y during the for i loop. When a thread is done computing its part of y, it should
copy its private storage into the shared variable.

(c) How does the performance of these two alternatives compare to the original program?
How do they compare to each other?

20. Although strtok_r is thread-safe, it has the rather unfortunate property that it gratuitously
modifies the input string. Write a tokenizer that is thread-safe and doesn’t modify the input
string.

1.14 Programming Assignments
1. Write a Pthreads program that implements the histogram program in Chapter ??.

2. Suppose we toss darts randomly at a square dartboard, whose bullseye is at the origin, and
whose sides are two feet in length. Suppose also that there’s a circle inscribed in the square
dartboard. The radius of the circle is 1 foot, and its area is π square feet. If the points that
are hit by the darts are uniformly distributed (and we always hit the square), then the number
of darts that hit inside the circle should approximately satisfy the equation

number in circle
total number of tosses

=
π

4
,

since the ratio of the area of the circle to the area of the square is π/4.
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We can use this formula to estimate the value of π with a random number generator:

number_in_circle = 0 ;
f o r ( toss = 0 ; toss < number_of_tosses ; toss++) {

x = random double between −1 and 1 ;
y = random double between −1 and 1 ;
distance_squared = x*x + y*y ;
i f ( distance_squared <= 1) number_in_circle ++;

}
pi_estimate = 4*number_in_circle / ( ( double ) number_of_tosses ) ;

This is called a “Monte Carlo” method, since it uses randomness (the dart tosses).

Write a Pthreads program that uses a Monte Carlo method to estimate π. The main thread
should read in the total number of tosses and print the estimate. You may want to use
long long ints for the number of hits in the circle and the number of tosses, since both may
have to be very large to get a reasonable estimate of π.

3. Write a Pthreads program that implements the trapezoidal rule. Use a shared variable for the
sum of all the threads’ computations. Use busy-waiting, mutexes, and semaphores to enforce
mutual exclusion in the critical section. What advantages and disadvantages do you see with
each approach?

4. Write a Pthreads program that finds the average time required by your system to create and
terminate a thread. Does the number of threads affect the average time? If so, how?

5. Write a Pthreads program that implements a “task queue.” The main thread begins by
starting a user-specified number of threads that immediately go to sleep in a condition wait.
The main thread generates blocks of tasks to be carried out by the other threads; each time
it generates a new block of tasks, it awakens a thread with a condition signal. When a
thread finishes executing its block of tasks, it should return to a condition wait. When the
main thread completes generating tasks, it sets a global variable indicating that there will
be no more tasks, and awakens all the threads with a condition broadcast. For the sake of
explicitness, make your tasks linked list operations.

6. Write a Pthreads program that uses two condition variables and a mutex to implement a read-
write lock. Download the online linked list program that uses Pthreads read-write locks, and
modify it to use your read-write locks. Now compare the performance of the program when
readers are given preference with the program when writers are given preference. Can you
make any generalizations?


