
Scaling Out

CS 677: Big Data

Lecture 3

▪ Breaking down the log analyzer

▪ Designing a better approach

▪ Scaling out

▪ Cluster Orchestration

Today’s Schedule

CS 677: Big Data 2

▪ Breaking down the log analyzer

▪ Designing a better approach

▪ Scaling out

▪ Cluster Orchestration

Today’s Schedule

CS 677: Big Data 3

▪ We already discussed a high-level approach for the log

analyzer assignment last class

▪ (or, how we would do it in Java)

▪ Would someone like to share their approach?

▪ ok, let me go first…

The Log Analyzer

CS 677: Big Data 4

▪ Time to get out your code review rocket launchers!

// Okay, I was too lazy to do the whole assignment. Whoops.

file, _ := os.Open("log.txt")
bytes, _ := io.ReadAll(file)
lines := strings.Split(string(bytes), "\n");

ips := make(map[string]int)
for _, line := range(lines) {

ip := strings.Split(line, "\t")[2]
ips[ip] = ips[ip] + 1

}

fmt.Println("There are", len(ips), "unique IP addresses in the file")

Baby’s First Log Analyzer

CS 677: Big Data 5

▪ No error checking

▪ If we have a billion-line dataset (which is actually not

that huge by the way!) what are the chances a few

records are corrupted?

▪ Reading the entire file into memory

▪ This is a HUGE problem!

▪ File is not closed when we’re done (minor)

▪ Hard-coded path

Problems

CS 677: Big Data 6

▪ I tested two versions of this: one that reads the entire

file into memory, and another that reads line by line

▪ 1.2 GB log file

▪ The “all in memory” version took 3.5s to run

▪ The “line by line” version took 2.2s to run

▪ On my laptop (with 16 GB of RAM), both programs work

▪ On an EC2 VM with 1.5 GB of RAM, the first program

crashes!

▪ All you get for an error is “killed” on Linux

Comparing Approaches

CS 677: Big Data 7

▪ How did you tackle this assignment?

Your Approach

CS 677: Big Data 8

▪ I mentioned that I wouldn’t share a “full size” dataset with

you…

▪ Let’s see how fast your implementation is!

▪ Check out /bigdata/mmalensek/logs on orion02

▪ ssh to USERNAME@stargate.cs.usfca.edu

▪ Then ssh to orion02

▪ There are three options: small.log , medium.log , and

large.log

Test Dataset

CS 677: Big Data 9

▪ Breaking down the log analyzer

▪ Designing a better approach

▪ Scaling out

▪ Cluster Orchestration

Today’s Schedule

CS 677: Big Data 10

▪ If I gave you infinite time or resources for this lab, you

could come up with a better approach

▪ Let’s hear your ideas!

▪ And let’s think about what the downsides of these

ideas are

Using our Imagination

CS 677: Big Data 11

▪ At this point I think you probably get it

▪ We can design a really awesome log analyzer but

there’s always going to be a way to overwhelm it

▪ The best we can do is design a scalable log analyzer

▪ At least then we can keep adding more servers as the

problem gets bigger

▪ And to truly scale, we have to distribute the problem to

more than one machine

▪ Better algorithms and hardware still matter, even in

this case

The Message

CS 677: Big Data 12

▪ Breaking down the log analyzer

▪ Designing a better approach

▪ Scaling out

▪ Cluster Orchestration

Today’s Schedule

CS 677: Big Data 13

▪ Humanity is storing more and more data at higher and

higher resolutions

▪ The systems we design should be able to handle these

growing workloads

▪ Managing Big Data, Step 1: use software that can

actually handle it

▪ Mind-blowing insights here, folks

▪ Imagine if I came into class and opened up an Excel

spreadsheet on day 1…

Scalability

CS 677: Big Data 14

▪ Scaling up

▪ Faster CPUs

▪ Larger RAM modules

▪ Bigger disks

▪ Scaling out

▪ More cores/CPUs

▪ More machines

▪ More disks

▪ Which one do we pick? Is there one answer?

Scaling up vs. Scaling out

CS 677: Big Data 15

▪ We can’t just wait for our hardware to get faster

▪ In fact, huge leaps in performance are just not

happening anymore

▪ Making chips run faster and faster consumes too

much power and produces too much heat

▪ Put simply, we can scale out now.

▪ Scaling out also means flexibility: if we use the cloud (or

the ideas behind it), then we can grow or shrink our

resource pool as necessary

Why we (usually) don’t scale up

CS 677: Big Data 16

▪ Architecturally, we need parallel systems

▪ Parallel computing can be summed up with a simple

motto:

▪ “Divide and conquer”

▪ Let’s take a problem, break it into smaller pieces, and

then have multiple cores/processors/machines work on

it all at once

▪ Challenge: getting all these machines to work together

Parallel Computing & Storage

CS 677: Big Data 17

▪ Breaking down the log analyzer

▪ Designing a better approach

▪ Scaling out

▪ Cluster Orchestration

Today’s Schedule

CS 677: Big Data 18

▪ If we want to scale out, then we need to get multiple

machines to work together

▪ We can orchestrate computations and storage

operations over a cluster of machines

▪ How do we do this coordination? The network!

Working Together

CS 677: Big Data 19

▪ Distributed systems do not have shared memory

▪ Instead, we rely on messages for exchanging state

between nodes

▪ Message – packet of information with a well-defined

wire format

▪ State – events occur that mutate the system

▪ Node – one participant (machine) of the distributed

system

Exchanging State

CS 677: Big Data 20

1. Information to be shared is constructed in memory on

Node A

2. The data is encapsulated and serialized for transfer

▪ Well-defined wire format

3. The message is sent across the network

4. Node B receives the data, reconstructs the message,

and applies the information/event to its own state space

Sending a Message

CS 677: Big Data 21

▪ We use the Internet Protocol (IP) Suite for a majority of

our communications

▪ For reliable delivery, we use the Transmission Control

Protocol (TCP)

▪ Modeled as a stream of bytes

▪ Packets will reach their destination (eventually…) and

the contents are verified

▪ Retransmit when a failure/corruption occurs

▪ Packets are received in order

TCP

CS 677: Big Data 22

▪ The first unintuitive thing about (TCP) sockets is there is

no concept of a “message”

▪ Instead, everything gets read/written as streams of

bytes

▪ Not all the bytes will come in at the same time,

although order is guaranteed with TCP

▪ We generally need to use fixed-size messages or prefix

them with a length to know what to expect

TCP Weirdness

CS 677: Big Data 23

▪ A common message format:

▪ [MESSAGE SIZE][MESSAGE PAYLOAD]

▪ Once you’ve unpacked the message payload, it can

contain more fields

▪ For example: message type, version number, flags,

etc.

▪ This allows for a layered approach:

▪ Network code

▪ Message creation code

▪ Pass through a chain of handlers

Simple Messaging [1/3]

CS 677: Big Data 24

Simple Messaging [2/3]

CS 677: Big Data 25

▪ If you don’t need advanced features, size-prefixed

messages work well

▪ Exceptions:

▪ You’d like to avoid reading the entire message before

you start processing it

▪ You don’t even need to process the whole message

(perhaps you are forwarding it somewhere else)

Simple Messaging [3/3]

CS 677: Big Data 26

▪ Serialization transforms an object, structure, or

application state into a format for transmission

▪ (and often storage to disk)

▪ Most common: binary formats

▪ Better performance

▪ When you receive a serialized message, transforming it

back into its original representation is called

deserialization

Serialization

CS 677: Big Data 27

▪ Most languages have built-in serialization functionality

(Java Serializable, Python pickling, etc.)

▪ My advice: don’t use for anything but prototyping

▪ These types of serialization are language-specific,

brittle, and can lead to application errors

▪ Memory leaks

▪ Broken messages between versions

▪ May produce large object graphs

▪ In some applications you’ll speed ~50-70% of your CPU

time serializing / deserializing messages

Automated Serialization

CS 677: Big Data 28

▪ Go provides a built-in serialization format: gobs

▪ Transforms data types (often used with structs) into

bytes

▪ Can be written to disk, network, etc.

▪ Note: only works with other go-based software

▪ Another common format: protocol buffers

▪ Originally designed by Google for internal use

▪ Allows broad interoperability

▪ Java/Python/etc clients/servers can interact with

go seamlessly

Serialization in Go

CS 677: Big Data 29

▪ We’ll use protocol buffers in this class

▪ Decent format, widely used, better compatibility than

gobs

▪ Each message will be prefixed with a size

▪ You’ll send one (or maybe a few) types of protobuf

messages

▪ … BUT they will be wrappers that encapsulate many

different sub-types of messages

▪ In other words, protobufs will handle encoding the

message type for us

Our Approach

CS 677: Big Data 30

▪ You’ll use the protoc compiler to generate go code

from .proto files

▪ Design your protocol, generate code, and then either

.Marshal() or .Unmarshal() your data

▪ Recommendation: build helper classes/functions that

handle creating these for you

▪ They can be kind of… verbose to instantiate inline

every time you need them

Compiling

CS 677: Big Data 31

// ... a message wrapper has been constructed ... //
serialized, err := proto.Marshal(wrapper)
prefix := make([]byte, 8)
binary.LittleEndian.PutUint64(prefix, uint64(len(serialized)))
util.WriteN(conn, prefix)
util.WriteN(conn, serialized)

// Here, util.WriteN will call conn.Write in a loop
// This ensures *ALL* data is sent!

Sending

CS 677: Big Data 32

prefix := make([]byte, 8)
conn.Read(prefix)

payloadSize := binary.LittleEndian.Uint64(prefix)
payload := make([]byte, payloadSize)
util.ReadN(conn, payload)

// util.ReadN reads the data in a loop, similar to WriteN

wrapper := &Wrapper{}
err := proto.Unmarshal(payload, wrapper)

// Ready to determine the type of 'wrapper' and then
// process the message...

Receiving

CS 677: Big Data 33

switch msg := wrapper.Msg.(type) {
 case *messages.AwesomeMessage:
 // process ...
 case *messages.NeatMessage:
 // process ...
 case nil:
 log.Println("Received an empty message!")
 default:
 fmt.Errorf("Unexpected message type %T", msg)
}

Determining the Message Type

CS 677: Big Data 34

▪ In Lab 3, you will put these concepts into practice to

create a file transfer suite that is somewhat similar to

File Transfer Protocol (FTP).

▪ You’ll use this code to help you implement Project 1

▪ But first, let’s check out an example application that also

uses Protocol Buffers…

TCP, Messaging, and Protobufs

CS 677: Big Data 35

