
Research Papers

CS 677: Big Data

Lecture 4

▪ Research papers tend to not be the most riveting

reading material

▪ They can be difficult to understand at times

▪ You might even feel that some papers are impossible to

interpret correctly

▪ …and you’d be right!

Reading Research Papers

CS 677: Big Data 2

▪ So, why aren’t researchers better writers?

▪ Easiest answer: it’s hard to write about these topics.

They’re complicated!

▪ Sometimes complexity is a “shield” against lazy

reviewers

▪ Reviewers are busy and would love to have a reason

to reject your paper ASAP

▪ Funding, promotions, etc. are often tied to publications

Why so hard to understand?

CS 677: Big Data 3

▪ It’s okay to not understand a paper 100%

▪ In some cases, it’s nearly impossible unless you also

get a copy of the writers’ brains

▪ Many times, you have to use your best guess to

determine how things actually worked

▪ Don’t forget to search online. Maybe they published

some slides or additional material you tap into

Some Advice

CS 677: Big Data 4

▪ Take note of things that are confusing

▪ Look for areas where details are left out

▪ Focus on uncovering insightful tidbits of information

▪ Think about the trade-offs being made and how you

could tackle the same problem differently

As You Read

CS 677: Big Data 5

▪ Why even bother with reading these?!

▪ If you are on the cutting edge of industry, you will still

have to read papers (and maybe write them)

▪ Written communication and presentation is crucial for

your careers

▪ You will be amazed at how much time you spend

writing docs and presenting your work

▪ I promise not to worry too much about the minor details

(grammar, spelling). Just get the idea across!

The Motivation for Doing This

CS 677: Big Data 6

▪ Check out Keshav’s “How to Read a Paper” on the

schedule page

▪ Proposes a 3-pass approach

▪ This is a good way to break the paper down

▪ Big Idea: don’t read from start to finish

Reading Strategies

CS 677: Big Data 7

1. Figure out what the authors are trying to do

▪ Read abstract, conclusions, section headings, and figure

captions

▪ Note any unknown jargon

2. Determine what components their system or approach

has

▪ Then figure out how the components interact. Sometimes it

helps to draw a picture

3. Dive into the details

▪ Ok, the paper uses algorithm X to provide its main

contribution. How does the algorithm work?

Reading Steps

CS 677: Big Data 8

Let’s have a “reading break” so we can skim over the HDFS

paper (if you haven’t read it already).

Then I’ll do a demo research presentation.

Let’s try this.

CS 677: Big Data 9

▪ What did you think?

▪ What new concepts/terminology was introduced?

▪ Can we fully grasp how the system works?

▪ What trade-offs are being made here?

▪ How would you change the design if you could take your

own approach?

Discussion

CS 677: Big Data 10

▪ This is a “demo” of a research paper presentation.

▪ This is one approach. You don’t have to do it like this (but

you definitely can!)

Before we Start

CS 677: Big Data 11

1. HDFS Background

2. System Design & Components

3. Benchmarks

Talk Outline

CS 677: Big Data 12

1. HDFS Background

2. System Design & Components

3. Benchmarks

Talk Outline

CS 677: Big Data 13

▪ HDFS was created by Yahoo! in ~2006 and released

under the Apache open source license

▪ 25,000 nodes, 25 PB of data in ~2010

▪ Heavily inspired by Google’s GFS

▪ Is the storage backbone for many legacy and modern

big data processing frameworks

▪ Higher-level abstractions can be built on top of HDFS.

For example, HBase provides tabular storage and

query support

History

CS 677: Big Data 14

▪ Traditionally, HDFS was paired with Hadoop, Yahoo!'s

open source MapReduce implementaiton

▪ Tight coupling between storage and computation

▪ HDFS can be used separately from Hadoop

▪ And technically, later versions of Hadoop evolved a

bit from the old MapReduce model

Hadoop

CS 677: Big Data 15

▪ Avro – serialization format

▪ HBase – Column-oriented storage

▪ Hive – Data warehouse

▪ Hadoop MapReduce – distributed computation

framework

▪ Pig – dataflow language

▪ Zookeeper – Cluster management and coordination

▪ Spark – Iterative, in-memory processing

▪ Storm – streaming data processing

The Ecosystem

CS 677: Big Data 16

▪ Provide a distributed file system interface that is similar

to standard POSIX file interface

▪ (what’s POSIX?)

▪ Performance is more important than exact

compatibility, though.

▪ Up front, HDFS does not:

▪ Use RAID / striping mechanisms. Replicas provide

fault tolerance

▪ Distribute metadata; all metadata for files is stored on

a single node.

Goals and Non-Goals

CS 677: Big Data 17

▪ Hadoop + HDFS were used heavily up to about 2015 or

so, but the computation side of things (Hadoop) has

seen extensive evolution

▪ Tools such as Spark have largely superseded Hadoop

▪ HDFS remains relevant today: used as a backbone to

store large blobs of data for higher-level abstractions

▪ Alternatives:

▪ Cassandra, HBase (slightly different data model)

▪ Amazon S3 (and other cloud competitors)

Relevance

CS 677: Big Data 18

1. HDFS Background

2. System Design & Components

3. Benchmarks

Talk Outline

CS 677: Big Data 19

▪ NameNode

▪ (and Secondary NameNode)

▪ File blocks

▪ DataNode

▪ Others:

▪ CheckpointNode

▪ BackupNode

▪ Balancer

Main Components

CS 677: Big Data 20

▪ We won’t cover the Secondary NameNode,

CheckpointNode, BackupNode, or Balancer.

▪ Fault tolerance for the NameNode has changed

significantly from the publication of this paper

▪ Has had some twists and turns over the years and not

all the approaches worked well

Main Components: Our Focus

CS 677: Big Data 21

Architecture Diagram

CS 677: Big Data 22

▪ Manages a Namespace

▪ Metadata: files, directories, permissions, quotas, etc.

▪ Stored entirely in RAM

▪ Maintains an on-disk journal of changes that can be

replayed when the cluster restarts

▪ Main purpose: providing the file system hierarchy and a

file:node mapping

▪ Uses DataNode IDs, not host names / ports / etc

▪ Manages cluster health: nodes failing, replication, etc.

NameNode

CS 677: Big Data 23

▪ Each file stored in HDFS is composed of one or more

blocks

▪ Block sizes are configurable (both as a default setting

or on a per-file basis)

▪ Blocks are distributed and replicated across DataNodes

▪ Only appends are allowed: no in-place edits

▪ Mirrors GFS’ approach

Blocks

CS 677: Big Data 24

▪ Blocks are not immediately available after storage

▪ Heartbeat updates inform the NameNode of the new

blocks

▪ During file retrievals or MapReduce jobs, replicas can

stand in for the original file

▪ Better data locality, more parallelism

▪ If an append operation is underway, the blocks can be

locked to allow read-only access

Accessing Blocks

CS 677: Big Data 25

▪ Each block entry at the NameNode takes space; since

the Namespace is an in-memory structure the

NameNode must have lots of RAM

▪ If many small files are stored in the system (such as from

the output of MapReduce jobs) index space is

consumed rapidly

▪ Solution: HAR file (Hadoop Archive) that bundles the

small files into one large, indexed file

▪ Kind of like a .zip

Managing Metadata

CS 677: Big Data 26

▪ Yahoo found that with three replicas, the probability of

losing a block during one year is less than .

▪ According to their tests, about percent of the nodes

fail per month.

▪ With short heartbeat times, recovery is fast (and scales

very well as the cluster expands)

Fault Tolerance

0.005
0.8

CS 677: Big Data 27

▪ HDFS is aware of “racks” and “datacenters”, allowing

replicas to be geographically distributed

▪ First two replicas go to different racks

▪ Additional replicas are placed randomly

▪ (but no two file replicas can be placed on the same

physical machine!)

Block Placement [1/2]

CS 677: Big Data 28

Block Placement [2/2]

CS 677: Big Data 29

Replication

CS 677: Big Data 30

▪ DataNodes are locked to a specific NameSpace ID

▪ Restart the cluster with a new ID? DataNodes will not

start up

▪ Helps ensure data safety

▪ On startup, the node is assigned a NodeID

▪ Each block that a DataNode stores is represented as

two files on the local host’s (native) file system:

▪ The data itself

▪ No extra padding if the full block is not used

▪ Metadata, including the block checksum

DataNodes

CS 677: Big Data 31

▪ Each DataNode sends a heartbeat every (by default)

to the NameNode to inform it of any file changes

▪ Must be frequent or the system will take a long time to

converge on a steady state

▪ If necessary, the NameNode will respond with

instructions to replicate/remove blocks, shut down, or

send a block report

▪ In other words: DataNodes don’t actively listen on a

port for NameNode instructions

Heartbeats

3s

CS 677: Big Data 32

Storage Flow [1/2]

CS 677: Big Data 33

▪ Note that the NameNode receives no file data!

▪ It does choose where the blocks go, though.

▪ The client only sends the blocks once. DataNodes

handle pipelining to the others

▪ During the heartbeats, DataNodes will report the new

blocks

▪ User can do an hflush operation to wait for all pending

operations to be committed

Storage Flow [2/2]

CS 677: Big Data 34

▪ HDFS supports creating a single snapshot of the

current namespace state

▪ Produces duplicate metadata on the NameNode

▪ Produces duplicate files on the DataNodes

▪ Allows the cluster to roll back to a previous state but is

expensive!

Snapshots

CS 677: Big Data 35

1. HDFS Background

2. System Design & Components

3. Benchmarks

Talk Outline

CS 677: Big Data 36

▪ 3500 node cluster

▪ 2 quad core Xeon processors @ 2.5ghz

▪ 16 GB RAM

▪ 4 directly attached SATA drives (one terabyte each)

▪ 1 gbps Ethernet

Test Setup

CS 677: Big Data 37

▪ Used the DFSIO benchmark to measure IO speed per

node

▪ “Empty” cluster:

▪ DFSIO Read: 66 MB /s per node

▪ DFSIO Write: 40 MB /s per node

▪ “Busy” cluster:

▪ Busy Cluster Read: 1.02 MB/s per node

▪ Busy Cluster Write: 1.09 MB/s per node

Benchmark 1: I/O

CS 677: Big Data 38

Benchmark 2: Sorting

CS 677: Big Data 39

Benchmark 3: NameNode Performance

CS 677: Big Data 40

▪ HDFS has enjoyed widespread use, and at this point is

very solid/reliable

▪ Also “boring”… but maybe in a good way?

▪ Has several well-documented weaknesses (the paper

authors don’t try to hide them)

▪ Resource usage at the NameNode

▪ NameNode failures

▪ Handling small files

▪ etc…

Conclusions [1/2]

CS 677: Big Data 41

▪ There hasn’t been a ton of development in this area,

since it’s a largely “solved” problem

▪ HDFS (or its competitors) is good enough for most

small or medium size organizations

▪ Most large organizations (Big Tech) have an in-house

solution that usually supports:

▪ Distributed namespaces (and failures)

▪ Small files

▪ Random access patterns, writes

▪ Additional security measures

Conclusions [2/2]

CS 677: Big Data 42

▪ You might be wondering… why break files into blocks

anyway?

▪ Sure, it spreads things out… but at a large enough

organization, you’d have enough large files that things

would gradually even out over time

▪ The REAL reason: it helps push the ‘parallelizable

portion’ of our algorithm toward 100%

▪ Your algorithm has to handle files that are split up…

and that means it’s embarrassingly parallel to

process!

One Last Thing

CS 677: Big Data 43

