
Network Design
CS 677: Big Data

Lecture 5



Spurious Correlations

CS 677: Big Data 2



Spurious Correlations

CS 677: Big Data 3



▪ Warehouse-Scale Computing

▪ Network Designs

▪ Scaling our Networking Code

▪ File Transfer Lab

Today’s Schedule

CS 677: Big Data 4



▪ Warehouse-Scale Computing

▪ Network Designs

▪ Scaling our Networking Code

▪ File Transfer Lab

Today’s Schedule

CS 677: Big Data 5



▪ Handling massive datasets requires distributing the

computations and storage

▪ To deal with this, Google pioneered the concept of

warehouse-scale computing

▪ To get started, let’s talk about a bit of theory…

Rethinking the Network

CS 677: Big Data 6



▪ In the best case scenario, doubling the number of

cores/CPUs/processing units will halve execution time

▪ In practice, this is difficult

▪ There is overhead associated with parallelism

▪ Amdahl’s law puts a bound on potential speedup:

▪  – speedup

▪  – parallelizable portion of the program

▪  – number of cores/CPUs/processing units

Amdahl’s Law [1/2]

S  =N  

(1−P )+  

N
P

1

S

P

N

CS 677: Big Data 7



Amdahl’s Law [2/2]

CS 677: Big Data 8



▪ The whole goal of many Big Data computation

frameworks is to maximize P

▪ (the parallelizable portion)

▪ Sometimes this requires an entirely new programming

model

▪ MapReduce paradigm

▪ Restrict what programmers can do

▪ The upside: automatic parallelization (or close

enough)

Distributed Computation

CS 677: Big Data 9



▪ Google’s warehouse scale computing concept touches on

both the software and hardware stacks

▪ Barroso et al., The Datacenter as a Computer

▪ In this model, data centers are filled with commodity hardware

with the best dollar:performance ratio

▪ Don’t buy a machine with a Core i9/i7… get an i5

▪ Connect these nodes with a reasonably-priced interconnect

▪ View the entire datacenter as a single computer and design

software that matches this model

Warehouse-Scale Computing

CS 677: Big Data 10



WSCs

CS 677: Big Data 11



“as computation continues to move into the cloud, the

computing platform of interest no longer resembles a

pizza box or a refrigerator, but a warehouse full of

computers”

        -- Barroso et al., The Datacenter as a Computer

Rationale

CS 677: Big Data 12



▪ Google has a patent for data centers based on shipping

containers

▪ Others have employed similar technology

▪ Pack a shipping container with cooling, racks of servers,

and a fast network

▪ Need more capacity? Stack a few more shipping

containers on the heap!

Google Modular Data Center

CS 677: Big Data 13



▪ Google’s next challenge: if our datacenter is a

“computer,” what software does it run?

▪ We need a way to compute things

▪ Like the process abstraction we have on operating

systems

▪ Led to the creation of MapReduce

▪ We need a way to store and retrieve things

▪ Led to the creation of Google File System (GFS)

▪ These technologies laid the foundation for modern

data-intensive computing approaches

Warehouse-Scale Software

CS 677: Big Data 14



WSC Storage Hierarchy

CS 677: Big Data 15



▪ Big Data spans the whole stack:

hardware, low-level (OS) software,

networking, algorithms…

▪ There is a speed differential in the

hardware memory hierarchy

▪ Most big data is on secondary

storage

▪ The challenge? Getting it off of the disks and

into cache, memory, or even the network

▪ Thought experiment:
▪ Memory accesses are measured in ns

▪ Hard disk drive accesses are measured in ms

▪ If we scale up, say 1 ns = 1 s, then a single hard

disk access takes at least 11.5 days!

The I/O Subsystem

CS 677: Big Data 16



▪ Avoid the disk at all costs

▪ If you must touch the disk, then try to limit the number

of passes over the data

▪ Sequential read/write patterns are often faster than

random

▪ Even with many models of SSD!

▪ One of the big benefits of Spark over Hadoop

MapReduce we’ll see later in class is being able to

cache data in memory

The General Idea

CS 677: Big Data 17



▪ Let’s take a minute or two to think about this…

▪ What factors do we have to consider when designing a

warehouse-scale computing platform?

1. Low-level (systems)

2. Network

3. Algorithmic

4. …Something else?

▪ Chat with the person next to you for a couple minutes,

then let’s brainstorm as a group

Designing for WSCs

CS 677: Big Data 18



▪ Warehouse-Scale Computing

▪ Network Designs

▪ File Transfer Lab

Today’s Schedule

CS 677: Big Data 19



▪ For the most part, we can rely on the network to do its

job and we’ll live at a higher level of abstraction

▪ Many networking concerns still creep up when

designing our systems

▪ For instance, do we use TCP or UDP?

▪ We still need to think about bandwidth, latency

▪ …especially when dealing with multiple data centers

▪ https://www.submarinecablemap.com

Thinking About the Network

CS 677: Big Data 20

https://www.submarinecablemap.com/


CS 677: Big Data 21



CS 677: Big Data 22



▪ The messages exchanged between nodes are

influenced by the underlying network design

▪ A P2P network operates differently than set of NFS

servers

▪ Join notifications, file locking, periodic heartbeats

▪ Note that this generally doesn’t mean the physical

network

▪ Instead, we often design distributed systems around

overlay networks

Designing the Network

CS 677: Big Data 23



Overlay Network: Ring Topology

CS 677: Big Data 24



Ring Topology: Physical Network

CS 677: Big Data 25



▪ In a ring topology, we can get by with one message:

▪ Send to next node

▪ …Or, if you want to get fancy:

▪ Send to next node

▪ Send to previous node

▪ This setup only makes sense in certain situations

▪ It certainly isn’t optimal for searching for a specific

file/user/etc!

▪ What might a good use case be?

Ring Messages

CS 677: Big Data 26



▪ A popular design for distributed systems is the shared

nothing (SN) architecture

▪ Each node in the system is self-sufficient

▪ No specialization

▪ No centralized components

▪ SN helps ensure scalability

▪ When all the nodes are the same, failure cases are

easier to handle

Shared Nothing Architecture

CS 677: Big Data 27



▪ Shared nothing design inspired loosely-coupled

distributed architectures based on microservices

▪ A server process that does one thing and does it well

▪ Advanced data workflows can be built by creating

pipelines of microservices

▪ This approach was championed heavily at Amazon and

likely led to their runaway success with AWS

Microservice Architecture

CS 677: Big Data 28



▪ There was an internal post by a former Amazon employee (now

at Google) that accidentally went public

▪ In 6 years, Amazon went from an online bookstore to a $1bn

IaaS provider

▪ Google should’ve owned the cloud market! How did this

happen? Why is Google unable to build quickly?

▪ Bezos reportedly issued a mandate to his company in the early

years that built a foundation for services success

▪ (when he wasn’t wearing cowboy hats and blasting off into

space…)

Bezos’ Mandate [1/3]

CS 677: Big Data 29



▪ All teams will henceforth expose their data and functionality

through service interfaces.

▪ Teams must communicate with each other through these

interfaces.

▪ There will be no other form of inter-process communication

allowed: no direct linking, no direct reads of another team’s data

store, no shared-memory model, no back-doors whatsoever.

The only communication allowed is via service interface calls

over the network.

Bezos’ Mandate [2/3]

CS 677: Big Data 30



▪ It doesn’t matter what technology you use.

▪ All service interfaces, without exception, must be designed

from the ground up to be externalizable. That is to say, the team

must plan and design to be able to expose the interface to

developers in the outside world. No exceptions.

▪ Anyone who doesn’t do this will be fired.  Thank you; have a nice

day!

▪ (This part is probably made up… )

Bezos’ Mandate [3/3]

CS 677: Big Data 31



▪ This approach makes it obvious why Amazon can build

new services so quickly

▪ Things get built internally and already have a “public”-

ready interface

▪ Get tested internally

▪ Want to sell it as a service? Make a UI, spin up instances

to support the service, and sell it

Business Advantage

CS 677: Big Data 32



▪ Complicated development: assuming all nodes are the

same means dealing with many corner cases

▪ What if the underlying hardware is different?

▪ Sometimes it’s just easier to put some information in a

central repository

▪ If excessive state information must be transferred, the

system will be more susceptible to latency

▪ Same goes for algorithms that require more

coordination

▪ There is a very recent trend back towards ‘monoliths’…

The Downsides of Shared Nothing

CS 677: Big Data 33



▪ An alternative is to include centralized/specialized

components

▪ Far simpler

▪ Represents a single point of failure

▪ GFS: central catalog of all files

▪ To help deal with failures, hierarchical designs spread

out the state information

▪ Example: DNS

(Semi)-Centralized Networks

CS 677: Big Data 34



▪ The original Napster (not the streaming service) was

one of the first popular P2P file sharing tools

▪ Laid the groundwork for today’s distributed systems

▪ On startup, the Napster client transmitted its list of files

to a central database

▪ Napster didn’t host any files, it just maintained a

database

▪ The paradigm was a bit revolutionary at the time

Napster (P2P)

CS 677: Big Data 35



Napster Network Layout

CS 677: Big Data 36



▪ The central database ended up being Napster’s

undoing

▪ As the service got popular, the server was flooded with

requests and couldn’t keep up

▪ It also was an easy target for law enforcement to shut

down

Napster’s Database

CS 677: Big Data 37



▪ Learning from Napster’s mistakes, Gnutella was

designed to be completely decentralized

▪ Instead of using a central database, queries flooded

through the entire network

▪ Unstructured network

▪ This poses some problems though:

▪ Performance: querying gets slower with more users

▪ How do you know when your query is over?

Gnutella

CS 677: Big Data 38



▪ Gnutella didn’t catch on, but KaZaA did

▪ Struck a balance between the two approaches

▪ Supernodes functioned as local databases

▪ Client queries were sent to the supernodes, which

would also query their peers

▪ In other words: a hierarchical approach

KaZaA

CS 677: Big Data 39



▪ Nowadays most folks download their favorite non-

copyrighted songs, public domain media, and Linux

distributions using BitTorrent

▪ But certainly not copyrighted material

▪ Puts the responsibility of indexing the files on

websites/users

▪ Recent versions support magnet, backed by a

distributed hash table

▪ IPFS employs a similar paradigm for sharing data

Today: BitTorrent

CS 677: Big Data 40



▪ Warehouse-Scale Computing

▪ Network Designs

▪ Scaling our Networking Code

▪ File Transfer Lab

Today’s Schedule

CS 677: Big Data 41



▪ A common paradigm when designing servers is the

fork-join model

▪ Split off when work can be handled by a single thread,

then merge back together when shared state is

necessary

▪ Web server: for each incoming connection, start up a

new thread

▪ The thread handles direct communication with the

client

Scaling Threads

CS 677: Big Data 42



▪ It takes time to create threads

▪ Updating OS data structures, creating a new

lightweight process

▪ Overhead from thread context: each has an individual

stack

▪ Generally in this model when a thread is performing I/O,

it blocks

▪ Has to be context switched out so others can use the

CPU for useful work

Thread Overhead

CS 677: Big Data 43



▪ One of the most popular web servers, Apache, followed this

model

▪ Thread-per-connection

▪ The server would famously crumble when hit with huge

amounts of traffic

▪ Their main competitor at the time, Microsoft IIS, wasn’t much

better

▪ This led to the formulation of the C10K problem

▪ “It’s time for web servers to handle ten thousand clients

simultaneously, don’t you think? After all, the web is a big

place now.”

Apache / C10K Problem

CS 677: Big Data 44



▪ On modern hardware, you can achieve 10,000

connections using Visual Basic 6 and a network

interconnect composed of carrier pigeons

▪ See RFC 1149,  IP over Avian Carriers

▪ Around ~2010 WhatsApp demonstrated 2m active

connections on a single 1U server

▪ 24 cores running Erlang on FreeBSD

An Update: C10M

CS 677: Big Data 45



▪ Usual setup: we’re sending a 5 MB file. Start writing it to

a socket, which blocks our thread

▪ OS context switches out the thread, something else

runs on that CPU/core

▪ Rather than blocking, wouldn’t it be better to tell the OS

“send this message,” and then go work on something

else?

▪ This is the idea behind asynchronous (or non-

blocking) I/O

How? Asynchronous I/O

CS 677: Big Data 46



▪ Java is the most widely-used language for building

scalable distributed systems

▪ (FOR NOW! )

▪ There an nio  package that provides non-blocking I/O

functionality

▪ Wrapper over OS mechanism (Unix select, Linux epoll,

FreeBSD kqueue)

▪ Notoriously hard to use

▪ Many folks use the netty library (built on top of nio) or

something similar

Async I/O in Java

CS 677: Big Data 47



Maurer & Wolfthal. Netty in Action

Sync vs. Async

CS 677: Big Data 48



▪ Connections are registered with the OS select()  mechanism

▪ The server blocks on the selector rather than an individual socket

connection

▪ When data is available, the selector gives the server a list of channels

that are ready to read

▪ Includes other states as well

▪ The server reads from the channels, buffering data if necessary

▪ Once a complete message has arrived, it gets passed to a thread pool

for handling

▪ Fun fact: this is more or less the way node.js operates

How it Works: Server Side

CS 677: Big Data 49



▪ Assume tasks arrive in numeric order all within 1 ns of each other.

▪ The width of the bar indicates how much data is being received

▪ Computational costs are proportional to task size

▪ Which task finishes first for blocking and non-blocking I/O?

Blocking vs. Non-Blocking

CS 677: Big Data 50



▪ Blocking: send(data):

▪ wait until ‘data’ is sent

▪ Non-blocking: send(data):

▪ returns immediately even though the send hasn’t

finished yet

▪ (or maybe it hasn’t even started)

▪ How do we know when the operation actually finished

though?

Asynchronous Send

CS 677: Big Data 51



▪ If we have to eventually know the result of an

asynchronous task, we can use futures

▪ Say we send a message, start doing some other work,

and then want to make sure the recipient got the

message

▪ Future.getResult()

▪ This operation will block if the send hasn’t finished

yet

We have more control over where we actually block,

and if the send is already done it doesn’t slow us

down!

Futures

CS 677: Big Data 52



▪ At a 1000 ft view, this functionality requires the OS

kernel to send an event to indicate a socket (or file

descriptor) is ready

▪ Naturally leads to event-based systems

▪ Each action is an event

▪ Each runtime-level thread maps to an OS-level thread

that blocks

▪ Note: this programming model can be cumbersome

▪ Alternatives: green threads, fibers, actors

Operating System Mechanism

CS 677: Big Data 53



▪ The actor pattern can be used to encapsulate events and

represent how they are processed between entities

▪ Green threads are runtime-level threads; they are not backed

by an OS thread

▪ Oracle et al. are incorporating green threads into the JVM

▪ Allows more control over scheduling, requires less

heavyweight OS resources to run

▪ Many other languages are adding support for this (if they don’t

have it already)

▪ Async/Await style programming? Avoid!

▪ You might be wondering what the concurrency story is in Go…

Actors and Green Threads

CS 677: Big Data 54



▪ Rather than mapping each Go thread to an OS thread, the

runtime:

1. Allocates a flexible number of worker threads

2. Schedules green threads (called goroutines) itself

▪ goroutines yield when they are about to block, letting a

different goroutine to take over the OS-level thread

▪ Effectively allows the programmer to write blocking code that

operates in a non-blocking way behind the scenes!

▪ It is fairly well-established that blocking code is much easier

for programmers to understand and reason about

goroutines

CS 677: Big Data 55



▪ go functionName()  will run functionName()  as a

goroutine, which essentially acts like a separate thread

▪ Whatever comes after the go  statement will run

immediately as well, i.e., there is no blocking

▪ Like other languages, you might need to think about

thread safety

▪ But the recommended approach is to avoid situations

that need thread safety

▪

Launching a goroutine

CS 677: Big Data 56



▪ Go’s concurrency model is based on Communicating

Sequential Processes

▪ The basic idea: goroutines share data by

communicating, not via shared memory

▪ Shared memory can be very fast, but is also the

source of many concurrency problems

▪ To share data between goroutines, use a channel

Communicating Sequential Processes (CSP)

CS 677: Big Data 57



Here’s an example from Go by Example:

package main
import "fmt"

func main() {
    messages := make(chan string)
    go func() { messages <- "ping" }()
    msg := <-messages
    fmt.Println(msg)
}

What will this program output?

Channels

CS 677: Big Data 58

https://gobyexample.com/channels


▪ It’s great to write perfect, idiomatic Go code that uses

channels for communication between goroutines

▪ I would encourage you to research and follow best

practices for Go – not just general best practices

▪ However, sometimes you’ll need things like mutexes to

get your work done

▪ That’s okay

▪ Don’t forget to balance learning the new language with

GSD (getting stuff done!)

Idiomatic Go vs. Getting Done

CS 677: Big Data 59



▪ Warehouse-Scale Computing

▪ Network Designs

▪ Scaling our Networking Code

▪ File Transfer Lab

Today’s Schedule

CS 677: Big Data 60



▪ With the time remaining, let’s discuss and work on the

file transfer lab

▪ If you haven’t already, find a partner to share your

.proto  with

▪ Your projects should be separate implementations,

but compatible at the wire format level

File Transfer Lab

CS 677: Big Data 61


