
Distributed Hash Tables

CS 677: Big Data

Lecture 7

▪ Distributed Lookups

▪ Distributed Hash Tables

▪ Chord

▪ Zero-Hop DHTs, Eventual Consistency

▪ Replication Strategies

▪ Hotspots, Heterogeneity, Sybil Attacks

Today’s Schedule

CS 677: Big Data 2

▪ Distributed Lookups

▪ Distributed Hash Tables

▪ Chord

▪ Zero-Hop DHTs, Eventual Consistency

▪ Replication Strategies

▪ Hotspots, Heterogeneity, Sybil Attacks

Today’s Schedule

CS 677: Big Data 3

▪ We’ve discussed a few approaches for finding data in

our system

▪ HDFS: The NameNode

▪ Or in our DFS, the controller

▪ Napster: central catalog

▪ Implemented as a database

▪ Gnutella: completely decentralized, flood to peers

▪ We need some way to map: file node

Recap: Distributed Lookups

=>

CS 677: Big Data 4

▪ A central index component means a single point of

failure

▪ Failover schemes can help

▪ Scalability is an issue for both approaches

▪ Single index: all requests funneled through

▪ Flooding: excessive communication

▪ Security implications

▪ Paint a giant target on your central component

Shortcomings

CS 677: Big Data 5

▪ Spreading global state across multiple nodes helps

alleviate these issues

▪ No single point of failure, better scalability, etc.

▪ Lots of real-world examples

▪ The downside: this can be difficult!

▪ How do we keep state consistent?

▪ Do we still keep a “root” node that contains a copy of

everything? Why or why not?

▪ There is another alternative!

An Alternative: Hierarchies

CS 677: Big Data 6

▪ Distributed Lookups

▪ Distributed Hash Tables

▪ Chord

▪ Zero-Hop DHTs, Eventual Consistency

▪ Replication Strategies

▪ Hotspots, Heterogeneity, Sybil Attacks

Today’s Schedule

CS 677: Big Data 7

▪ Another alternative is Distributed Hash Tables

▪ DHTs

▪ Decentralized

▪ Storage and retrieval are handled by the same

deterministic algorithm

▪ Supports put(k, v) and get(k)

▪ Also used to place replicas

▪ Near-uniform load balancing

Distributed Hash Tables

CS 677: Big Data 8

▪ DHTs are just like the hash table data structures we use

(and abuse) all the time

▪ Except when you put() something into the DHT, it’s

being stored on one of the nodes in the cluster

▪ We take a hash algorithm such as MD5 or SHA-1 and

look at its complete hash space

▪ MD5: 128 bits = unique keys

▪ SHA-1: 160 bits = unique keys

DHTs in a Nutshell

2128

2160

CS 677: Big Data 9

▪ We represent our hash algorithm’s hash space as a

circle

▪ In a DHT, there isn’t really a “start” or “end” of the hash

space

▪ Next, we assign nodes to be responsible for particular

portions of the hash space

▪ Each file is mapped to the hash space and falls under

a single node’s purview

▪ Creates an overlay network – like our ring topology

The Hash Space

CS 677: Big Data 10

▪ Breaking up the hash space in this way is a form of

consistent hashing

▪ When the hash table is resized (adding or removing a

node), generally keys must be remapped:

▪ – number of keys

▪ – number of nodes

▪ Contrasts with basic hashing schemes, such as using

 to determine file destinations

Consistent Hashing

K/n
K

n

hash(o)%n

CS 677: Big Data 11

DHT Overview: Storage

CS 677: Big Data 12

DHT Overview: Retrieval

CS 677: Big Data 13

▪ Good:

▪ Highly scalable, decentralized, no bottlenecks

▪ Finding data takes hops, where is the

number of nodes

▪ Uniform load distribution

▪ Bad:

▪ Exact key required for retrieval

▪ Queries on values not possible

▪ (bad for document-oriented databases)

DHTs, The Good and Bad

O(log n) n

CS 677: Big Data 14

▪ In a pure DHT, file placement

is basically random

▪ Great for keeping

things balanced

▪ Alternatives:

▪ Design a hash function

that maintains order

(user 2 comes after

user 1)

▪ Use just a portion of

the file name / path

Data Placement

CS 677: Big Data 15

▪ Chord, Pastry

▪ Prefix routing: Routes for delivery of messages based

on values of GUIDs to which they are addressed

▪ CAN

▪ Uses distance in a d-dimensional hyperspace into

which nodes are placed

▪ Kademlia

▪ Uses XOR of pairs of GUIDs as a metric for distance

between nodes

Routing Content in a DHT [1/2]

CS 677: Big Data 16

▪ Cassandra

▪ A variety of hash functions are supported:

▪ MD5

▪ Order-preserving

▪ …and the initial placement of nodes can be balanced

Routing Content in a DHT [2/2]

CS 677: Big Data 17

▪ No matter what algorithm, there are generally two key

rules to follow when routing in a DHT:

1. Each hop through the network gets you a bit closer

▪ In other words, do not overshoot

▪ Remember, our hash space wraps back around

2. Routing goes one way only

▪ Can be clockwise or counter-clockwise, but not

both!

Basic Routing Strategy

CS 677: Big Data 18

▪ Each node in a DHT maintains a routing table with a

limited view of the network

▪ Only a small amount of state is maintained

▪ In some systems the routing table is also called the

finger table

▪ Predecessor – previous active node in the overlay

▪ Successor – next active node in the overlay

Routing Table Terminology

CS 677: Big Data 19

Let’s take a look at one way to implement a DHT…

Moving On

CS 677: Big Data 20

▪ Distributed Lookups

▪ Distributed Hash Tables

▪ Chord

▪ Zero-Hop DHTs, Eventual Consistency

▪ Replication Strategies

▪ Hotspots, Heterogeneity, Sybil Attacks

Today’s Schedule

CS 677: Big Data 21

▪ In Chord, both node IDs and file IDs are mapped to the

same hash space

▪ Each node is responsible for an ID range:

▪ Its own ID up to its predecessor’s ID

▪ When placing data with key , locate node where:

▪

▪ (find the smallest numbered node that is greater than

or equal to)

▪ We also track – number of nodes in the system

Chord

k n
min(id(n) >= k)

k

N

CS 677: Big Data 22

 Network24

CS 677: Big Data 23

▪ What keys are

node 2 responsible

for?

▪ Node 10?

 Network: Populated24

CS 677: Big Data 24

▪ Generate an ID using the current timestamp

▪ Helps reduce collisions

▪ An alternative: hash the hostname

▪ This can lead to problems. Why?

▪ Let’s say

▪ We need to contact 2 nodes to join: the successor

and the predecessor

Joining the Network

hash(timestamp) = 5

CS 677: Big Data 25

▪ First,

▪

▪ Let node 7 know we’re

entering the network

▪ Ask node 7 for its

predecessor

▪ (2 becomes our

predecessor)

Joining the Network, ID = 5

lookup(our_id)
= 7

CS 677: Big Data 26

▪ This approach

minimizes

communication

between nodes

▪ Node 10, for

instance, was

not involved at all

▪ What about

routing tables?

Joining the Network

CS 677: Big Data 27

▪ We do need to keep the routing tables up to date

▪ However, remember our rule: no overshooting!

▪ In the worst case scenario (no routing information), our

DHT becomes a ring topology

▪ All next hops are set to your successor

▪ To find out where data goes, do a lookup. Then update

your routing table if you discovered a new node in the

process

Updating Routing Tables

CS 677: Big Data 28

▪ Each node maintains a finger table, which contains the

successor, predecessor, and a few nearby nodes

▪ Maintaining more than just our direct neighbors is

what makes this approach more efficient than a

simple ring topology!

▪ If we have a 4-bit identifier space (for a total of = 16

nodes), each table contains 4 routing entries

▪ Route[i] = lookup(my_node_id +)

The Finger Table

24

2i

CS 677: Big Data 29

▪ Route[i]

▪

▪ Route[0] =

▪

▪ Route[1] =

▪

▪ Route[2] =

▪

▪ Route[3] =

▪

Demo Routing Table: Network, 24 ID = 5

= lookup(ID + 2)i

lookup(5 + 2) =0 7

lookup(5 + 2) =1 7

lookup(5 + 2) =2 10

lookup(5 + 2) =3 15

CS 677: Big Data 30

Routing Requests: ID = 14

CS 677: Big Data 31

Routing Requests: ID = 9

CS 677: Big Data 32

Routing Tables

CS 677: Big Data 33

▪ Distributed Lookups

▪ Distributed Hash Tables

▪ Chord

▪ Zero-Hop DHTs, Eventual Consistency

▪ Replication Strategies

▪ Hotspots, Heterogeneity, Sybil Attacks

Today’s Schedule

CS 677: Big Data 34

▪ Taking multiple hops through the network can incur varying

amounts of latency

▪ Some applications want to hit more constant latencies

▪ In an internal system (completely administered by one

organization), it’s possible to know more about the network

layout

▪ In these cases a Zero-Hop DHT works in the same way, except

every node has the entire routing table

▪ Coral CDN – uses a hierarchy of DHTs to load balance between

clusters

Other Approaches

CS 677: Big Data 35

▪ When nodes enter and leave the network in a controlled

manner, zero-hop DHTs may be a good fit

▪ routing hops rather than

▪ Every node must maintain an entire copy of the routing

table

▪ Synchronous updates are not required

▪ If an old route is used, just forward the request to the

correct node

▪ Node down? Try the predecessor

Zero-Hop DHTs [1/2]

O(1) O(log n)

CS 677: Big Data 36

▪ Zero-Hop DHTs are a great example of finding a

compromise in the middle

▪ Retain many good aspects of regular DHTs, but are also

easier to implement

▪ May sacrifice some scalability, but in general they

target a different use case

▪ Some implementations: Dynamo, Cassandra, Riak

▪ Dynamo: Amazon & SLAs

Zero-Hop DHTs [2/2]

CS 677: Big Data 37

▪ Unlike most of the distributed file systems we’ve

surveyed, GlusterFS is actually mountable as a Unix FS

▪ Backed by Zero-Hop DHT

▪ Hashes directory ID + file ID to place/locate files

▪ When we use a regular file system, move operations are

common

▪ When the usual lookup fails, broadcast to everyone

▪ Supports linkfiles, which are essentially a symlink to

redirect lookup requests to another node

▪ Great for dealing with file migrations

GlusterFS

CS 677: Big Data 38

▪ Joining or leaving the

Chord network causes

inconsistency

▪ In this example, it may

take a bit for node 15

to learn about node 5

▪ The system will

eventually reach a

steady state (usually

in ms)

Eventual Consistency [1/2]

CS 677: Big Data 39

▪ Eventual consistency is a mainstay of distributed

systems

▪ It’s easier to accept that things will be inconsistent

(sometimes) rather than trying to prevent it

▪ Amazon: shopping cart vs billing

▪ You can often achieve much better performance if you

relax consistency

▪ But remember to ask yourself: are your

customers/clients okay with that?

Eventual Consistency [2/2]

CS 677: Big Data 40

▪ Distributed Lookups

▪ Distributed Hash Tables

▪ Chord

▪ Zero-Hop DHTs, Eventual Consistency

▪ Replication Strategies

▪ Hotspots, Heterogeneity, Sybil Attacks

Today’s Schedule

CS 677: Big Data 41

▪ We’ve seen from the HDFS paper that maintaining 3

total copies of each file is our gold standard

▪ In some situations, 5 is warranted

▪ …And sometimes having 0 copies is the way to go

▪ It’s always worth thinking about the cost of maintaining

these, though

▪ How do we do replication in DHTs?

Replication

CS 677: Big Data 42

▪ Send a copy to R

successors

▪ If Node 5 goes down,

Node 7 will take its load

▪ Great! Promote

replica to primary file

▪ Doesn’t account for

query traffic, physical

locations, etc.

Replicate to Successors

CS 677: Big Data 43

▪ Rather than replicating immediately to a certain set of

nodes, wait for queries to come in

▪ Cache the replicas at nodes that forwarded the query

▪ Reduces the latency of frequent queries that originate

at the same node

▪ Let’s say my client always contacts the node in San

Francisco, which then retrieves from a node in Texas

▪ Store a replica in SF

▪ Better for query performance, not absolute safety

Query Paths

CS 677: Big Data 44

▪ For each file, add a salt

▪ Random data used as an additional input to the hash

function

▪ SALT_REPLICA1 = “Hi there!”

▪ SALT_REPLICA2 = “What what what”

▪ put(key + SALT_REPLICA1, value)

▪ Now we can deterministically locate the replicas

associated with a key

Salting

CS 677: Big Data 45

▪ Distributed Lookups

▪ Distributed Hash Tables

▪ Chord

▪ Zero-Hop DHTs, Eventual Consistency

▪ Replication Strategies

▪ Hotspots, Heterogeneity, Sybil Attacks

Today’s Schedule

CS 677: Big Data 46

▪ Our cluster may be heterogeneous or have hotspots

that receive a disproportionate amount of load

▪ To help fill in the gaps and even out the load, nodes may

be required to initially represent several IDs

▪ Used frequently in large deployments – hundreds of

IDs are assigned to each node

▪ Allows variations on the default load level: new node

could take on 1.2 nodes’ worth of keys

Avoiding Hotspots

CS 677: Big Data 47

Overloaded, Lonely Node 5

CS 677: Big Data 48

Cassandra: VNodes

CS 677: Big Data 49

▪ With virtual nodes, each physical host is responsible for

many more portions of the overall hash space

▪ Common approach: randomize the vnode locations

▪ More coverage means less of a chance that one node

gets stuck with too much load

▪ But wait, wasn’t localizing network changes one of the

pros of using DHTs?

▪ Yes. But more coverage can be a good thing too.

VNodes

CS 677: Big Data 50

Replacing Node 5 (No VNodes)

CS 677: Big Data 51

Replacing Node 5 (With VNodes)

CS 677: Big Data 52

▪ VNode pros:

▪ Better load balancing properties

▪ Better parallelism when recovering

▪ VNode cons:

▪ Less localized faults: loss of a single node is

dispersed across the hash space

▪ Many more nodes participating in recovery means

less resources for answering queries

VNodes: Pros and Cons

CS 677: Big Data 53

▪ What we’ve discussed thus far assumes uniform

hardware capabilities

▪ How can we account for newer, better hardware?

▪ Let’s not go with the HDFS approach of throwing them

in the garbage

▪ New nodes can advertise as several nodes

▪ Maybe the next-gen machines each get assigned two

places in the hash ring

Dealing with Heterogeneity

CS 677: Big Data 54

▪ Outside a controlled environment, DHTs are susceptible

to Sybil Attacks

▪ Dissociative identity disorder

▪ Attacker masquerades as a huge number of false

identities

▪ Given enough control of the network, data and routing

tables can be manipulated

▪ Prevention: central login service, reverse lookup,

vouching for other nodes

Sybil Attacks

CS 677: Big Data 55

