
Lecture 11

CS 677: Big Data

Cluster Orchestration

CS 677: Big Data

▪ Modern cluster orchestration

▪ Scaling Big Data Infrastructure

▪ Log Management

Today’s Schedule

2

CS 677: Big Data

▪ Modern cluster orchestration

▪ Scaling Big Data Infrastructure

▪ Log Management

Today’s Schedule

3

CS 677: Big Data

▪ How do these large organizations manage their huge fleets of clusters?

▪ MR, Spark, Hive, … the list goes on

▪ Clearly hand-configuring each cluster does not scale

▪ But it used to be pretty normal

▪ More common: configuration management tool

▪ Better: declare cluster state, let a scheduler enforce whatever policies

you set

Orchestration

4

CS 677: Big Data

▪ Basic approach for orchestrating computations over a distributed

system

▪ Given a set of resources, allocate incoming tasks

▪ Based on priority, workload size, past usage, etc.

▪ Queue up tasks if there aren’t enough resources available

▪ Deal with fault tolerance via speculative execution

▪ The hard part: accounting for heterogeneity

▪ (hard, but doable)

Stepping Back: Distributed Schedulers

5

CS 677: Big Data

▪ Nobody just runs Hadoop, Spark, Kafka, Flink, etc.

▪ It is extremely wasteful to allocate hardware for a specific

purpose

▪ E.g., “these machines are a Hadoop cluster”

▪ Many of these applications depend on or support one another

▪ E.g., HDFS

The Real Issue

6

CS 677: Big Data

▪ Many open source big data platforms use Apache

Zookeeper to manage their individual clusters

▪ ZK is great at electing leaders, coming to a consensus, etc…

▪ …but it’s not really designed to manage an entire datacenter

▪ Minimal KV storage, configuration management

functionality

Cluster Management: Zookeeper

7

CS 677: Big Data

▪ For a very long time, Google operated a cluster management

platform to handle these issues

▪ Unlike many of their projects, they didn’t publish many details about

how the system worked

▪ Generally:

▪ If they haven’t published it yet, they’re still using it ☺

▪ ”Borg”

Secret Internal Google Project

8

CS 677: Big Data

▪ According to Google, Borg saved them from building an entire extra

datacenter!

▪ Based on the huge increase in resource utilization

▪ More utilization = more efficiency

▪ Same logic as Amazon behind creating AWS

▪ Proprietary, but folks at Berkeley AmpLab were able to piece together

details based on conversations with Google engineers

▪ And of course, design a new cluster management system based on their

expertise in this area of research

▪ Mesos

Borg

9

CS 677: Big Data

Mesos / Borg

10

CS 677: Big Data

▪ How do you make all these ”clusters” work together seamlessly?

▪ VMs

▪ Great and all, but take a long time to spin up, shut down, and are resource

intensive

▪ Containers

▪ Processes in a container believe that they are running on their own machine

▪ Isolated from all other processes on the host

▪ Can dynamically change resource allocations (CPU, Memory, etc.)

▪ Run on the host kernel

Containers

11

CS 677: Big Data

▪ On Linux, control groups and namespaces allow rapid

changes to how resources are allocated

▪ Want to limit a container’s disk write speed, CPU usage,

memory, etc.? You can do it on the fly

▪ Much of this infrastructure (basically, the stuff that

makes containers work) was built by Google engineers

cgroups, namespaces

12

CS 677: Big Data

▪ Resource Limits

▪ Putting an upper bound on memory

▪ Prioritization

▪ Give certain groups higher CPU usage, disk I/O, or network I/O throughput

▪ Accounting

▪ Monitoring various resource usage metrics

▪ Control

▪ Freezing, checkpointing, restarting

Control Groups Features

13

CS 677: Big Data

▪ Beyond the control offered by cgroups, namespaces provide

container isolation

▪ Users, process IDs, hostname, timezone are distinct from the host OS

▪ Even though they’re running the same kernel

▪ Can have separate mount points (both physical and virtual devices)

▪ Perhaps most importantly: network isolation so the container appears

to be an individual network host

Namespace Isolation

14

▪ unshare --user --pid --map-root-user \
 --mount-proc --fork bash

Namespace Isolation Demo

15

CS 677: Big Data

▪ Many “borg” features eventually found their way to their

open-source Kubernetes project

▪ Run most cluster software in lightweight containers that

can be moved around, have resource limitations, etc.

▪ This practice has spread to most large orgs managing

huge datasets / processing needs

Kubernetes

16

CS 677: Big Data

▪ Modern cluster orchestration

▪ Scaling Big Data Infrastructure

▪ Log Management

Today’s Schedule

17

CS 677: Big Data

Scaling Big Data Mining Infrastructure: The Twitter

Experience

▪ Insights from two vantage points:

▪ Jimmy Lin – Prof at University of Maryland (extended sabbatical

from 2010 – 2012 at Twitter)

▪ Dmitriy Ryaboy – Engineering manager of the analytics

infrastructure team, Twitter

▪ Future work, research directions, gaps in the literature

▪ Recommendations for industry use of big data applications

18

CS 677: Big Data

Growth of Analytics at Twitter

▪ 2010

▪ 100 employees

▪ 4 people devoted to analytics

▪ 30-node Hadoop cluster

▪ 2012

▪ 1000+ employees

▪ Thousands of Hadoop nodes, many data centers

▪ 100 TB of raw data ingested per day

▪ ~10,000+ MapReduce jobs per day

19

CS 677: Big Data

Key Insights (1/2)

▪ Exploratory/predictive analytics is under-represented in the literature

▪ Data scientists have a difficult time figuring out what data points exist, how

they’re structured, and their relationships

▪ Big data analytics is no longer a competitive advantage, it’s a requirement

▪ Everybody is doing it!

▪ EVERYBODY

▪ Often, analysis of analytics data is important

20

CS 677: Big Data

Key Insights (2/2)

▪ Ensembles used heavily for production machine learning

operations

▪ Better results with large training sets

▪ Best practices when handling logging at scale

▪ Service architecture

▪ Amazon-style microservices with well-defined interfaces

21

CS 677: Big Data

▪ Rather than dumping all your data into one gigantic model, build

multiple models

▪ Statistical, machine learning, etc.

▪ Use predictions/classifications from these models as results from a

“group of experts”

▪ This is good for performance (parallelism) and also means that you

can have models specialize for a particular part of the dataset

Ensembles

22

CS 677: Big Data

▪ Modern cluster orchestration

▪ Scaling Big Data Infrastructure

▪ Log Management

Today’s Schedule

23

CS 677: Big Data

Data Source for Analytics: Logs

▪ From a high level, this entire paper is about logs

▪ Each application manages its own logging system

▪ Printing to stdout/stderr

▪ Logging with several different Java frameworks

▪ System logs

▪ Every action taken at Twitter is logged

▪ Logs become the analytics dataset

24

CS 677: Big Data

Logging Issues: Software

▪ Sharded MySQL databases were used to handle log messages

▪ Relational databases are not a good fit for logs

▪ Scaling is tough

▪ Transaction support is not necessary

▪ Data points do not need to be mutable

▪ Schemas are expensive to change

▪ Better solution: online analytics processing (OLAP) systems

25

CS 677: Big Data

Solution: Scribe

▪ Developed by Facebook

▪ Designed specifically for managing large amounts of log data

▪ Scribe aggregators collect logs and push them out to

Hadoop staging clusters

▪ Eventually, logs all find their way to the main data warehouse

▪ Alternatives: Apache Flume, Kafka

26

CS 677: Big Data

Scribe Setup

“We consider the problem of log transport mostly
solved”

27

CS 677: Big Data

Logging Issues: Schema

Log-parsing regex, 2010

28

CS 677: Big Data

MySQL Log Schema

29

CS 677: Big Data

Issues with Plain Text

▪ No types

▪ No formatting requirements

▪ Only inter-organization conventions that aren’t followed

▪ What is the delimiter?!?!

▪ Newlines? What about multi-line stack traces?

▪ Spaces? Tabs?

▪ Both were found in Twitter usernames

30

CS 677: Big Data

What about JSON? (1/2)

▪ Key-value storage, primitive support for types

▪ JSON logs “generally start out as an adequate solution, but then

gradually spiral into a persistent nightmare”

▪ No naming conventions to identify keys

▪ CamelCase, smallCamelCase, snake_case, and the mythical

dunder__snake!

▪ You really need to inspect each JSON document from each source

31

CS 677: Big Data

JSON Log “Schema”

32

CS 677: Big Data

What about JSON? (2/2)

▪ There is no standard way of representing null

▪ null, NULL, nil

▪ Arbitrary nesting is supported

▪ How to know when the nesting stops?

▪ Turtle { Turtle { Turtle { Turtle { Turtle { Turtle { Turtle {

▪ Some Solutions:

▪ Reading, remembering code of each component

▪ Generating histograms of the keys used

33

CS 677: Big Data

Log Schema Solution: Apache Thrift

▪ Supports data types

▪ Optional fields are clearly marked

▪ Fields can be deprecated

▪ Structure is well-defined

▪ Binary serialization improves performance

▪ Decouples logical and physical representations

▪ Alternatives: Google’s Protobufs, Apache Avro

▪ Still no solution for consistent naming…

34

CS 677: Big Data

Sample Thrift “Schema”

35

CS 677: Big Data

Additional Schema Enhancements

▪ Hive’s HCatalog provides global schema and naming

conventions for all HDFS-based applications

▪ So far, only used by some teams

▪ Provenance data: determining the chain of custody for outputs

▪ Hooks into HCatalog load/store operations

▪ Builds a graph of dependencies for datasets

36

CS 677: Big Data

Scaling out Machine Learning

▪ At Twitter, they found:

▪ The more data, the better

▪ Simple features are often strikingly effective

▪ Most user-friendly ML toolkits (Weka, Mallet) are designed for single-node

setups

▪ Leads to computational inefficiencies

▪ Sampling can hurt rather than help

▪ Reduces dataset sizes (see point #1)

37

CS 677: Big Data

Distributed ML Tools

▪ Bottou, Vowpal Wabbit show promise, but do not offer

integrated solutions

▪ Impedance mismatch between Hadoop/MapReduce and

common ML tasks

▪ Issues with dataset formats: transforming the data to fit into

the framework takes longer than the machine learning!

▪ MLBase, RDDs seem to address some of these points

38

CS 677: Big Data

Twitter’s Open Questions

▪ Big Data Visualization

▪ Aggregating and displaying terabytes of information on a user’s laptop still

hasn’t been solved adequately

▪ Solutions still under development

▪ Real-time interaction with large datasets

▪ Data mining is an iterative, exploratory task

▪ Current workflow: write Pig script, submit job, wait 5 minutes, discover error,

correct error, wait another 5 minutes

39

CS 677: Big Data

Some Thoughts

▪ If logging (write-heavy operation) is the most important analytics

component at Twitter, why didn’t they consider Cassandra?

▪ Sampling can be very useful, if done carefully

▪ An interesting choice to not develop many of the tools in-house

▪ Many of the “hip” tech companies have “not invented here” (NIH) syndrome…

so maybe this is a good thing

▪ Analytics may be the difference between a profitable Twitter and a bankrupt

one

40

