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CS 677: Big Data

▪ How do these large organizations manage their huge fleets of clusters? 

▪ MR, Spark, Hive, … the list goes on 

▪ Clearly hand-configuring each cluster does not scale 

▪ But it used to be pretty normal 

▪ More common: configuration management tool 

▪ Better: declare cluster state, let a scheduler enforce whatever policies 

you set

Orchestration
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CS 677: Big Data

▪ Basic approach for orchestrating computations over a distributed 

system 

▪ Given a set of resources, allocate incoming tasks 

▪ Based on priority, workload size, past usage, etc. 

▪ Queue up tasks if there aren’t enough resources available 

▪ Deal with fault tolerance via speculative execution 

▪ The hard part: accounting for heterogeneity 

▪ (hard, but doable)

Stepping Back: Distributed Schedulers
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CS 677: Big Data

▪ Nobody just runs Hadoop, Spark, Kafka, Flink, etc. 

▪ It is extremely wasteful to allocate hardware for a specific 

purpose 

▪ E.g., “these machines are a Hadoop cluster” 

▪ Many of these applications depend on or support one another 

▪ E.g., HDFS

The Real Issue
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▪ Many open source big data platforms use Apache 

Zookeeper to manage their individual clusters 

▪ ZK is great at electing leaders, coming to a consensus, etc… 

▪ …but it’s not really designed to manage an entire datacenter 

▪ Minimal KV storage, configuration management 

functionality

Cluster Management: Zookeeper
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CS 677: Big Data

▪ For a very long time, Google operated a cluster management 

platform to handle these issues 

▪ Unlike many of their projects, they didn’t publish many details about 

how the system worked 

▪ Generally:  

▪ If they haven’t published it yet, they’re still using it ☺  

▪ ”Borg”

Secret Internal Google Project
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▪ According to Google, Borg saved them from building an entire extra 

datacenter! 

▪ Based on the huge increase in resource utilization 

▪ More utilization = more efficiency 

▪ Same logic as Amazon behind creating AWS 

▪ Proprietary, but folks at Berkeley AmpLab were able to piece together 

details based on conversations with Google engineers 

▪ And of course, design a new cluster management system based on their 

expertise in this area of research 

▪ Mesos

Borg
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Mesos / Borg
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CS 677: Big Data

▪ How do you make all these ”clusters” work together seamlessly? 

▪ VMs 

▪ Great and all, but take a long time to spin up, shut down, and are resource 

intensive 

▪ Containers 

▪ Processes in a container believe that they are running on their own machine 

▪ Isolated from all other processes on the host 

▪ Can dynamically change resource allocations (CPU, Memory, etc.) 

▪ Run on the host kernel

Containers
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▪ On Linux, control groups and namespaces allow rapid 

changes to how resources are allocated 

▪ Want to limit a container’s disk write speed, CPU usage, 

memory, etc.? You can do it on the fly 

▪ Much of this infrastructure (basically, the stuff that 

makes containers work) was built by Google engineers

cgroups, namespaces
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▪ Resource Limits 

▪ Putting an upper bound on memory 

▪ Prioritization 

▪ Give certain groups higher CPU usage, disk I/O, or network I/O throughput 

▪ Accounting 

▪ Monitoring various resource usage metrics 

▪ Control 

▪ Freezing, checkpointing, restarting

Control Groups Features
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▪ Beyond the control offered by cgroups, namespaces provide 

container isolation 

▪ Users, process IDs, hostname, timezone are distinct from the host OS 

▪ Even though they’re running the same kernel 

▪ Can have separate mount points (both physical and virtual devices) 

▪ Perhaps most importantly: network isolation so the container appears 

to be an individual network host

Namespace Isolation
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▪ unshare --user --pid --map-root-user \ 
     --mount-proc --fork bash

Namespace Isolation Demo
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CS 677: Big Data

▪ Many “borg” features eventually found their way to their 

open-source Kubernetes project 

▪ Run most cluster software in lightweight containers that 

can be moved around, have resource limitations, etc. 

▪ This practice has spread to most large orgs managing 

huge datasets / processing needs

Kubernetes
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CS 677: Big Data

Scaling Big Data Mining Infrastructure: The Twitter 

Experience

▪ Insights from two vantage points: 

▪ Jimmy Lin – Prof at University of Maryland (extended sabbatical 

from 2010 – 2012 at Twitter) 

▪ Dmitriy Ryaboy – Engineering manager of the analytics 

infrastructure team, Twitter 

▪ Future work, research directions, gaps in the literature 

▪ Recommendations for industry use of big data applications
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Growth of Analytics at Twitter

▪ 2010 

▪ 100 employees 

▪ 4 people devoted to analytics 

▪ 30-node Hadoop cluster 

▪ 2012 

▪ 1000+ employees 

▪ Thousands of Hadoop nodes, many data centers 

▪ 100 TB of raw data ingested per day 

▪ ~10,000+ MapReduce jobs per day
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CS 677: Big Data

Key Insights (1/2)

▪ Exploratory/predictive analytics is under-represented in the literature 

▪ Data scientists have a difficult time figuring out what data points exist, how 

they’re structured, and their relationships 

▪ Big data analytics is no longer a competitive advantage, it’s a requirement 

▪ Everybody is doing it! 

▪ EVERYBODY 

▪ Often, analysis of analytics data is important
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Key Insights (2/2)

▪ Ensembles used heavily for production machine learning 

operations 

▪ Better results with large training sets 

▪ Best practices when handling logging at scale 

▪ Service architecture 

▪ Amazon-style microservices with well-defined interfaces

21



CS 677: Big Data

▪ Rather than dumping all your data into one gigantic model, build 

multiple models 

▪ Statistical, machine learning, etc. 

▪ Use predictions/classifications from these models as results from a 

“group of experts” 

▪ This is good for performance (parallelism) and also means that you 

can have models specialize for a particular part of the dataset

Ensembles
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CS 677: Big Data

Data Source for Analytics: Logs

▪ From a high level, this entire paper is about logs 

▪ Each application manages its own logging system 

▪ Printing to stdout/stderr 

▪ Logging with several different Java frameworks 

▪ System logs 

▪ Every action taken at Twitter is logged 

▪ Logs become the analytics dataset
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Logging Issues: Software

▪ Sharded MySQL databases were used to handle log messages 

▪ Relational databases are not a good fit for logs 

▪ Scaling is tough 

▪ Transaction support is not necessary 

▪ Data points do not need to be mutable 

▪ Schemas are expensive to change 

▪ Better solution: online analytics processing (OLAP) systems
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Solution: Scribe

▪ Developed by Facebook 

▪ Designed specifically for managing large amounts of log data 

▪ Scribe aggregators collect logs and push them out to 

Hadoop staging clusters 

▪ Eventually, logs all find their way to the main data warehouse 

▪ Alternatives: Apache Flume, Kafka
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Scribe Setup

“We consider the problem of log transport mostly 
solved”
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Logging Issues: Schema

Log-parsing regex, 2010

28



CS 677: Big Data

MySQL Log Schema
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Issues with Plain Text

▪ No types 

▪ No formatting requirements 

▪ Only inter-organization conventions that aren’t followed 

▪ What is the delimiter?!?! 

▪ Newlines? What about multi-line stack traces? 

▪ Spaces? Tabs? 

▪ Both were found in Twitter usernames
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What about JSON? (1/2)

▪ Key-value storage, primitive support for types 

▪ JSON logs “generally start out as an adequate solution, but then 

gradually spiral into a persistent nightmare” 

▪ No naming conventions to identify keys 

▪ CamelCase, smallCamelCase, snake_case, and the mythical 

dunder__snake! 

▪ You really need to inspect each JSON document from each source 
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JSON Log “Schema”
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What about JSON? (2/2)

▪ There is no standard way of representing null 

▪ null, NULL, nil 

▪ Arbitrary nesting is supported 

▪ How to know when the nesting stops? 

▪ Turtle { Turtle { Turtle { Turtle { Turtle { Turtle { Turtle { 

▪ Some Solutions: 

▪ Reading, remembering code of each component 

▪ Generating histograms of the keys used
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Log Schema Solution: Apache Thrift

▪ Supports data types 

▪ Optional fields are clearly marked 

▪ Fields can be deprecated 

▪ Structure is well-defined 

▪ Binary serialization improves performance 

▪ Decouples logical and physical representations 

▪ Alternatives: Google’s Protobufs, Apache Avro 

▪ Still no solution for consistent naming…
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Sample Thrift “Schema”
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Additional Schema Enhancements

▪ Hive’s HCatalog provides global schema and naming 

conventions for all HDFS-based applications 

▪ So far, only used by some teams 

▪ Provenance data: determining the chain of custody for outputs 

▪ Hooks into HCatalog load/store operations 

▪ Builds a graph of dependencies for datasets
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Scaling out Machine Learning 

▪ At Twitter, they found: 

▪ The more data, the better 

▪ Simple features are often strikingly effective 

▪ Most user-friendly ML toolkits (Weka, Mallet) are designed for single-node 

setups 

▪ Leads to computational inefficiencies 

▪ Sampling can hurt rather than help 

▪ Reduces dataset sizes (see point #1)
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Distributed ML Tools

▪ Bottou, Vowpal Wabbit show promise, but do not offer 

integrated solutions 

▪ Impedance mismatch between Hadoop/MapReduce and 

common ML tasks 

▪ Issues with dataset formats: transforming the data to fit into 

the framework takes longer than the machine learning! 

▪ MLBase, RDDs seem to address some of these points
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Twitter’s Open Questions

▪ Big Data Visualization 

▪ Aggregating and displaying terabytes of information on a user’s laptop still 

hasn’t been solved adequately 

▪ Solutions still under development 

▪ Real-time interaction with large datasets 

▪ Data mining is an iterative, exploratory task 

▪ Current workflow: write Pig script, submit job, wait 5 minutes, discover error, 

correct error, wait another 5 minutes
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Some Thoughts

▪ If logging (write-heavy operation) is the most important analytics 

component at Twitter, why didn’t they consider Cassandra? 

▪ Sampling can be very useful, if done carefully 

▪ An interesting choice to not develop many of the tools in-house 

▪ Many of the “hip” tech companies have “not invented here” (NIH) syndrome… 

so maybe this is a good thing 

▪ Analytics may be the difference between a profitable Twitter and a bankrupt 

one
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