
Stream Sampling

CS 677: Big Data

Lecture 12

▪ One way to make the dataset more manageable is to

generate a representative sample and analyze it

▪ If the rules aren’t working in your favor, change the

rules!

▪ The key is knowing when you can sample and what

algorithms work best

Data Reduction via Sampling

CS 677: Big Data 2

▪ Sampling Overview

▪ Stream Sampling

▪ Gap Sampling

▪ Reservoir Sampling

Today’s Schedule

CS 677: Big Data 3

▪ Sampling Overview

▪ Stream Sampling

▪ Gap Sampling

▪ Reservoir Sampling

Today’s Schedule

CS 677: Big Data 4

▪ Ok, so we can mostly agree that one great way to deal

with big data is to make it less “big”

▪ Dividing up the problem into smaller pieces is one way

to do this

▪ Another simple way to achieve this: sample from our

dataset

▪ If the sample is representative, then it will serve as a

good stand-in for the actual, large dataset

▪ Sample vs. census: asking some instead of all

Sampling

CS 677: Big Data 5

▪ …isn’t this cheating?!

▪ Wait! Don’t submit your course drop forms yet!

▪ We can actually do a pretty good job with just a small

sample

Hmm…

CS 677: Big Data 6

▪ What’s an easy way to speed up processing 1 ZB of

data? Ignore almost all of it!

▪ Let’s take a step back and think for a second here,

though… What are we losing?

▪ A big one: less-represented data points are likely

going to be lost

▪ We have to be careful what conclusions we draw

Approximation

CS 677: Big Data 7

▪ You might be sitting there in horror right now, thinking “Is

Matthew really going to talk about generating a random

sample for 3 hours?”

▪ (Yes, in this hypothetical situation class actually goes

longer than usual just to torture you)

▪ Luckily, we get to cover some big data-specific

algorithms:

▪ Stream sampling

▪ Gap sampling

▪ Reservoir sampling

Sampling Algorithms

CS 677: Big Data 8

▪ The naïve approach: if we have 100 data points and

want a 10% sample, randomly select 10

▪ Sampling with replacement: put the selected data

points back into the dataset after each selection

▪ Thought experiment: what dataset does this make

sense for?

▪ In code: pick 10 unique indices, grab the data. Done!

▪ What about in a distributed setting?

▪ Oh, right, that’s where things start to get difficult…

Implementing our Sample

CS 677: Big Data 9

▪ To get started, we can just divide up the work and

sample X% from each data partition

▪ Combine the samples into one bigger sample

▪ This is pretty decent. It works… unless we don’t know

how many records we’re going to get at each task

▪ Maybe we don’t even know the total number of inputs

we’re going to get

▪ Streaming data!

Distributed Sampling

CS 677: Big Data 10

▪ Let’s say we can find out how many records will be

assigned to each mapper (or distributed task)

▪ We may still want additional filtering, for instance

removing invalid readings

▪ Now we need to know the number of records to

remove, and the number of incoming records

▪ Adding more constraints makes this even more difficult

More Complications

CS 677: Big Data 11

▪ We can go through the data as a preprocessing step to

determine these parameters, then sample it

▪ The problem: this takes time

▪ We are relying on spinning rust to get this work done

▪ Avoid making multiple passes over the data!

Multiple Passes

CS 677: Big Data 12

1. Don’t touch the data at all

2. Only touch the data once

3. Wait a really, really, really long time

Your Options

CS 677: Big Data 13

▪ I have already mentioned that almost all big data

problems can be viewed as streaming data problems

▪ The reason for this is simple: most of the time you can’t

make multiple passes over the data

▪ It’s too big to do that efficiently!

▪ So, when you’re dealing with a VERY large dataset, reach

for streaming algorithms

An Aside: Streaming Data

CS 677: Big Data 14

▪ Alright, so we can’t assume we know the number of

records handled by each task

▪ Instead, we can reduce the amount of state information

required

▪ Basically, can we forget about everything we’ve done in

the past but still sample accurately when we’re looking

at a single data point?

Reconfiguring our Algorithm

CS 677: Big Data 15

▪ Sampling Overview

▪ Stream Sampling

▪ Gap Sampling

▪ Reservoir Sampling

Today’s Schedule

CS 677: Big Data 16

▪ Inspect each data point in isolation, and flip a coin

▪ Heads = sample it

▪ Tails = ignore it

▪ This gives us a 50% sample

▪ If we want a 10% sample, select a random number from

0.0 to 1.0

▪ Only keep the data point if the random number is 0.0

to 0.1

▪ (or whatever range represents 10% of the possible

values)

Stream Sampling

CS 677: Big Data 17

▪ Pros:

▪ Easy to write; conceptually simple

▪ No need for any extra information

▪ Cons:

▪ Invokes the random number generator a lot

▪ Actually can add up over time

▪ We have to parse every input

▪ We won’t get an exact sample

▪ May be a bit more or less than say, 10%

Stream Sampling: Pros and Cons

CS 677: Big Data 18

▪ Sampling Overview

▪ Stream Sampling

▪ Gap Sampling

▪ Reservoir Sampling

Today’s Schedule

CS 677: Big Data 19

▪ To reduce the amount of data we parse, let’s skip over

records that won’t be sampled

▪ Works for a stream of unknown size

▪ Start by skipping a random amount of records. If we

want a 10% sample, skip 0 to 10 records

▪ After sampling the first data point, just keep skipping

ahead by 10 records

▪ Decide you want a 50% sample instead? Skip every

other record.

Gap Sampling

CS 677: Big Data 20

▪ Pros:

▪ We can actually avoid processing records! (Speed!)

▪ Cons:

▪ To be a true random sample, all data points must have an

opportunity to be picked

▪ We only kind of satisfy this constraint

▪ We can modify this slightly. Instead of moving ahead 10

records, we could add some random noise to make sure we

move ahead by an average of 10 records

▪ Once again, we might not get the exact sample size we’re

hoping for

Gap Pros and Cons

CS 677: Big Data 21

▪ Sampling Overview

▪ Stream Sampling

▪ Gap Sampling

▪ Reservoir Sampling

Today’s Schedule

CS 677: Big Data 22

▪ Useful when the size of the incoming stream is unknown

or there are memory constraints

▪ Initialize as a fixed size array on creation

▪ Limits memory usage

▪ As data points stream in, place them at random array

indexes

▪ Over time, update the array less and less

▪ Ensures long-term representativeness

Reservoir Sampling

CS 677: Big Data 23

▪ Let’s say I’m going to give one lucky winner an “A” in the

class, right now

▪ I’ll pick two students and have them flip a coin

▪ Heads: Student 1 survives, Student 2 is eliminated

▪ Tails: Student 2 survives, Student 1 is eliminated

▪ Then I’ll pick the next ”challenger” for the coin flip

▪ The last student standing (i.e., not eliminated) is the

winner and receives an A

▪ Ready to play? Are the rules fair?

Intuition: Elimination Game

CS 677: Big Data 24

▪ No, the rules aren’t fair!

▪ (When are they?!)

▪ The first two students have the worst chance of survival

▪ Even if you are the luckiest person on earth, there is a not a

great chance you’ll win 17 coin flips

▪ Unless you are using a trick coin…

▪ So the last student to play has a HUGE advantage

▪ A more intuitive example: arm wrestling competition with the

same rules

▪ How do we fix this issue?

Eliminated!

CS 677: Big Data 25

▪ Online sampling technique that creates representative random

samples when:

▪ The number of incoming data points in unknown

▪ The total dataset cannot fit in main memory

▪ Fixed size ()

▪ When data points arrive, they are assigned a random insertion

key () in the range

▪ If , where is the total number of observations, the data

point replaces a random entry in the reservoir

▪ The probability of replacement decreases over time

Reservoir Algorithm

n

k [0, 1]
k <

C
n C

CS 677: Big Data 26

▪ Reservoir sampling can be augmented by allowing

sample weights to increase the likelihood of certain data

points being placed in the array

▪ We may place a greater weight on samples from a

particular sensor, for instance

▪ Additionally, storing the insertion key when placing data

in the reservoir allows merging later

▪ To determine which elements go in the merged arrays,

just sort by insertion key

Reservoir Sampling Extensions

CS 677: Big Data 27

▪ Each map task maintains a reservoir of size

▪ Insert each record into the reservoir

▪ If the record gets stored in the reservoir, also store its

insertion key (the random number associated with it)

▪ At the end of the Map phase, emit entries, plus their

insertion keys

▪ During the reduce (on a single reducer) keep the

elements with the smallest insertion keys

Distributed Reservoirs

n

n

CS 677: Big Data 28

▪ While reservoir sampling provides a replacement for our

standard random sampling procedure, it does have

weaknesses

▪ The sample must fit into memory (generally acceptable)

▪ Outliers or uncommon values will be under-represented

Representativeness

CS 677: Big Data 29

▪ Sometimes the outliers are actually more interesting

than the common cases!

▪ Here, we can use stratified sampling to produce a

sample that better represents all populations rather

than just the majority

▪ Observe the distribution of data points, and then create

sub-reservoirs across the distribution

▪ Uncommon data points now have their own reservoir

and won’t be overpowered by the majority

Stratified Sampling

CS 677: Big Data 30

▪ Ultimately, if I ask you to find a specific record, sampling

won’t help

▪ There’s a good chance it won’t even be in your sample

▪ Sampling is appropriate for quickly gaining aggregate

knowledge

Needle in a Haystack

CS 677: Big Data 31

▪ If you’re strategic, you can build smaller subsets of the

overall dataset

▪ Use these samples to do initial exploratory analyses

▪ Done frequently with data warehousing systems such

as Hive

▪ Build summary tables that answer certain “business

questions” as a background batch process

Saving Subsets

CS 677: Big Data 32

▪ If you can still get a reasonably correct answer

▪ Ideally a 100% correct answer…

▪ And you will probably reuse the sample more than once

▪ Then sample! (And use one of these Big Data-oriented

algorithms!!)

To Conclude

CS 677: Big Data 33

