
Data Sketches: Frequent Items

CS 677: Big Data

Lecture 14

▪ In many cases, data is produced much faster than we

can analyze it

▪ Batch processing systems like MapReduce let us do

analysis offline, after the fact

▪ Good: studying long-term trends

▪ Bad: reacting quickly…

▪ Health monitoring, rerouting traffic, etc.

▪ We can use a stream processing system, but what

happens when that can’t handle the workload?

Streaming Big Data

CS 677: Big Data 2

▪ Rather than storing/processing everything, we can build

data sketches of the datasets

▪ Some information is thrown away…

▪ …but we can store a wider breadth of information.

▪ These approaches have memory and processing

benefits

▪ Also well-suited to IoT devices, low-powered cloud

instances, etc

Sketching

CS 677: Big Data 3

▪ What if we have a lot of elements in a stream and want

to know which happen the most frequently?

▪ These are “Heavy hitters” – most popular videos,

websites, network users, etc.

▪ Tracking this in a small amount of space is a challenging

problem

▪ Simple but inefficient approach: store everything and

sort it!

▪ Correction: not inefficient. Impossible with big

data.

Counting Events

CS 677: Big Data 4

▪ Imagine we are electing a new US president

▪ Whoever receives the majority of votes wins

▪ We have a data stream of votes

▪ Easy! Tally up all the votes for Candidate A and

Candidate B and report the winner

▪ Except it’s not really that simple…

▪ Many US citizens will be shocked to learn that there

are more than two possible presidential candidates

▪ In fact, it’s possible to write in a vote for whoever you

want

Majority Sketch

CS 677: Big Data 5

▪ Fine. We’ll just store ALL the votes and see who wins.

▪ It’s still gonna either be Candidate A or Candidate B!

▪ Unfortunately, to make matters worse, society has collapsed in

an Idiocracy-style dystopia

▪ All computing power is devoted to TikTok

▪ You are able to salvage the original Apollo Guidance Computer

(AGC) from a museum, but it doesn’t have a lot of memory

▪ Instead of the actual vote count, can we at least find out who

got over 50% of votes?

Tracking Votes

CS 677: Big Data 6

▪ Enough tomfoolery. Let’s look at this algorithm.

1. Initialize a counter to zero. (c = 0)

2. For each element in the stream:

▪ If the counter is zero, set majority = element

▪ If majority == element , increment counter (c++)

▪ Else, decrement the counter. (c--)

▪ When our stream is finished, if c > 0 then we have

successfully determined the majority

Streaming Majority Algorithm

CS 677: Big Data 7

▪ If the final count is 0 , then the only thing we know is the

last element recorded is NOT the majority

▪ It could have occurred up to times… (meaning we

have a tie) but we don’t know for sure

▪ Time for a recount!

▪ If we have three strong candidates, this algorithm won’t

help

▪ We need a situation where knowing what element

occurred more than 50% of the time is useful

Exceptions

 2
n

CS 677: Big Data 8

▪ Maybe the previous situation doesn’t seem very likely or

useful

▪ This algorithm sometimes gets taught in undergrad

courses to introduce streams

▪ Might be less common now though

▪ But the algorithm IS used in many high-traffic, low

computing power situations

▪ (determine the destination the majority of packets are

being sent to on a network switch)

Time Wasted?

CS 677: Big Data 9

▪ Around 2000 or so, a remixed version of this algorithm

caught on

▪ Massive data streams can make revisiting simple, not-

so-useful algorithms a bit more interesting

▪ Frequent Elements Sketch

▪ Concerned with “top N” type queries

or “iceberg queries”

▪ Useful for network monitoring, log analysis, and data

mining

A Better Majority Algorithm

CS 677: Big Data 10

▪ Let’s say we want to know the top YouTube videos

based on URL clicks

▪ Initialize an array with size and store

pairs in the array:

…

Frequent Elements Sketch [1/2]

N

N (URL, count)

[0] → (URL , count)1

[1] → (URL , count)2

[N] → (URL , count)N

CS 677: Big Data 11

▪ Start reading items from the data stream…

▪ When an element (URL in our case) comes in:

1. If it’s in the sketch already, increment its count

2. If it’s not in the sketch, but there’s a free space in the

array, insert it in the empty slot

3. If it’s not in the sketch and there’s no room for it in the

array, decrement all counts

4. If any count drops to 0, remove it from the array, which

will free up a slot

Frequent Elements Sketch [2/2]

CS 677: Big Data 12

▪ First, sort the array by the element counts

▪ Boom! Report the results. They are your top

elements.

Using the Sketch

N

CS 677: Big Data 13

▪ We can use a map / dictionary / etc. to track the

elements instead

▪ Easier to test for set membership, increment existing

counts

▪ Track the total number of elements

▪ Allows us to calculate the percentage each element

represents of the overall dataset

Enhancements

CS 677: Big Data 14

▪ This algorithm requires us to know – how many

things we want

▪ That is not always possible

▪ It is susceptible to attacks if we cannot trust the data

stream

▪ Feeding it with the right (unique or random) inputs will

cause frequent elements to be removed

▪ The answer will be technically right, but since we

threw most of the data away we will not be able to

detect the attack

Weaknesses

N

CS 677: Big Data 15

▪ We have only begun to see the tip of the iceberg when it

comes to streaming algorithms

▪ Get it?? Get it?? Iceberg queries!!

▪ If we are willing to throw away more data and use a bit of

probability we can make some cool predictions with

very little storage space…

Where to go next

CS 677: Big Data 16

