cs 677: Big Data Data Sketches: Frequent Items

Lecture 14

Streaming Big Data

- In many cases, data is produced much faster than we can analyze it
- Batch processing systems like MapReduce let us do analysis offline, after the fact
 - Good: studying long-term trends
 - Bad: reacting quickly...
 - Health monitoring, rerouting traffic, etc.
- We can use a stream processing system, but what happens when that can't handle the workload?

Sketching

- Rather than storing/processing everything, we can build data sketches of the datasets
- Some information is thrown away...
 - ...but we can store a wider breadth of information.
- These approaches have memory and processing benefits
 - Also well-suited to IoT devices, low-powered cloud instances, etc

Counting Events

- What if we have a lot of elements in a stream and want to know which happen the most frequently?
- These are "Heavy hitters" most popular videos, websites, network users, etc.
- Tracking this in a small amount of space is a challenging problem
 - Simple but inefficient approach: store everything and sort it!
 - Correction: not inefficient. Impossible with big data.

Majority Sketch

- Imagine we are electing a new US president
 - Whoever receives the majority of votes wins
- We have a data stream of votes
 - Easy! Tally up all the votes for Candidate A and Candidate B and report the winner
- Except it's not really that simple...
 - Many US citizens will be shocked to learn that there are more than two possible presidential candidates
 - In fact, it's possible to write in a vote for whoever you want

Tracking Votes

- Fine. We'll just store **ALL** the votes and see who wins.
 - It's still gonna either be Candidate A or Candidate B!
- Unfortunately, to make matters worse, society has collapsed in an Idiocracy-style dystopia
 - All computing power is devoted to TikTok
- You are able to salvage the original *Apollo Guidance Computer* (AGC) from a museum, but it doesn't have a lot of memory
 - Instead of the actual vote count, can we at least find out who got over 50% of votes?

Streaming Majority Algorithm

- Enough tomfoolery. Let's look at this algorithm.
- **1.** Initialize a counter to zero. (c = 0)
- **2.** For each element in the stream:
 - If the counter is zero, set majority = element
 - If majority == element, increment counter (c++)
 - Else, decrement the counter. (c--)
 - When our stream is finished, if c > 0 then we have successfully determined the majority

Exceptions

- If the final count is 0, then the only thing we know is the last element recorded is **NOT** the majority
- It could have occurred up to $\frac{n}{2}$ times... (meaning we have a tie) but we don't know for sure
 - Time for a recount!
- If we have three strong candidates, this algorithm won't help
 - We need a situation where knowing what element occurred more than 50% of the time is useful

Time Wasted?

- Maybe the previous situation doesn't seem very likely or useful
- This algorithm sometimes gets taught in undergrad courses to introduce streams
 - Might be less common now though
- But the algorithm **IS** used in many high-traffic, low computing power situations
 - (determine the destination the majority of packets are being sent to on a network switch)

A Better Majority Algorithm

- Around 2000 or so, a remixed version of this algorithm caught on
- Massive data streams can make revisiting simple, notso-useful algorithms a bit more interesting
- Frequent Elements Sketch
 - Concerned with "top N" type queries or "iceberg queries"
 - Useful for network monitoring, log analysis, and data mining

Frequent Elements Sketch [1/2]

- Let's say we want to know the top N YouTube videos based on URL clicks
- Initialize an array with size N and store (URL, count) pairs in the array:

 $egin{aligned} [0] &
ightarrow (URL_1, count) \ [1] &
ightarrow (URL_2, count) \end{aligned}$

 $[N]
ightarrow (URL_N, count)$

. . .

Frequent Elements Sketch [2/2]

- Start reading items from the data stream...
- When an element (URL in our case) comes in:
 - 1. If it's in the sketch already, increment its count
 - 2. If it's not in the sketch, but there's a free space in the array, insert it in the empty slot
 - **3.** If it's not in the sketch and there's no room for it in the array, decrement all counts
 - **4.** If any count drops to 0, remove it from the array, which will free up a slot

Using the Sketch

- First, sort the array by the element counts
- Boom! Report the results. They are your top N elements.

Enhancements

- We can use a map / dictionary / etc. to track the elements instead
 - Easier to test for set membership, increment existing counts
- Track the total number of elements
 - Allows us to calculate the percentage each element represents of the overall dataset

Weaknesses

- This algorithm requires us to know $N\,-\,{\rm how}$ many things we want
 - That is not always possible
- It is susceptible to attacks if we cannot trust the data stream
 - Feeding it with the right (unique or random) inputs will cause frequent elements to be removed
 - The answer will be *technically* right, but since we threw most of the data away we will not be able to detect the attack

Where to go next

- We have only begun to see the tip of the iceberg when it comes to streaming algorithms
 - Get it?? Get it?? Iceberg queries!!
- If we are willing to throw away more data and use a bit of probability we can make some cool predictions with very little storage space...