
Spark

CS 677: Big Data

Lecture 16

▪ Some Spark Background

▪ Operations

▪ Persistence

▪ Spark Programming Tips

Today’s Schedule

CS 677: Big Data 2

▪ Some Spark Background

▪ Operations

▪ Persistence

▪ Spark Programming Tips

Today’s Schedule

CS 677: Big Data 3

▪ MR was the first step on an ongoing journey

▪ There are two roads to follow to keep improving things

in this space:

▪ Computation

▪ Storage

Diverging Paths

CS 677: Big Data 4

▪ GFS/HDFS were not exactly groundbreaking but made

distributed file systems mainstream

▪ Kicked off research in storage systems / databases:

▪ NoSQL! Whoo!

▪ Wait a minute…

▪ NewSQL?! Hooray!

▪ The conclusion: we need more than blob storage

▪ …users expect database-like properties

Storage

CS 677: Big Data 5

▪ Why are we writing everything to disk in between

phases?

▪ Machine learning algorithms don’t map well to this

process

▪ “MR everything” forces us into some awkward scenarios

from a programming perspective

▪ Even Java isn’t great for these types of computational

use cases

Computation

CS 677: Big Data 6

▪ Google basically no longer uses MapReduce

▪ But the paradigm itself is still alive and well

▪ Spark, Flink, etc. have recently become popular

▪ Hadoop, like many “cool” technologies, was over-

prescribed

▪ It’s still a great option for processing gigantic amounts

of data in a batch fashion

Now What?

CS 677: Big Data 7

df.rdd
 .filter(
 lambda row: row.geohash.startswith(prefixes))
 .map(
 lambda row: (
 timestamp_to_month(row.Timestamp),
 row.relative_humidity_zerodegc_isotherm))
 .reduceByKey(
 lambda humidity1, humidity2:
 (humidity1 + humidity2) / 2.0)
 .collect()

Put Away Your Pitchforks…

CS 677: Big Data 8

▪ Spark augments MapReduce paradigm by adding

several built-in functions and supporting in-memory

computations

▪ Development is chugging along, whereas Hadoop is

more or less in maintenance mode

▪ Huge leap in features and speed from 1.0x to 3.0

▪ Inputs are represented as RDDs, which have two

primary operations:

▪ Transformations

▪ Actions

Why Spark

CS 677: Big Data 9

▪ Some Spark Background

▪ Operations

▪ Persistence

▪ Spark Programming Tips

Today’s Schedule

CS 677: Big Data 10

▪ Applied to RDDs to produce new RDD states

▪ We’re modifying the lineage, not doing computations

(yet)

▪ Examples:

▪ Splitting each line in the RDD into words

▪ Incrementing each number

▪ Removing rows that match certain conditions

▪ Important: transformations are lazy. They are only

applied when a terminal action is present!

Transformations

CS 677: Big Data 11

▪ Return something to the driver or produce some type of

terminal result

▪ Cause computations to execute

▪ Could be a count of matching records

▪ .count()

▪ Or actual row values

▪ .take(50)

▪ Or even saving the result of several transformations to

HDFS or the local file system

Actions

CS 677: Big Data 12

▪ Many actions will result in shuffle operations

▪ The mechanism here is very similar to MapReduce

▪ In fact, there is a Map and Reduce phase

▪ Let’s say Spark needs to create a new RDD after doing

our classic word count job

▪ It has to do a reduction based on keys (the words) and

add up the values (counts)

▪ This is an “all-to-all” operation

Shuffle

CS 677: Big Data 13

▪ map (applies a function to each row of the RDD)

▪ filter (only keeps rows that satisfy a condition)

▪ sort

▪ distinct

▪ join

▪ intersection / union / cartesian

▪ group / reduce / aggregate / sort by key

Transformations

CS 677: Big Data 14

▪ reduce (apply a reduction. Given two elements, the

function supplied should return a single element)

▪ count (retrieve the number of rows in the RDD)

▪ take (get the first N rows of the RDD)

▪ foreach (apply a function to each row)

▪ collect (transfers the RDD to the driver)

▪ AVOID if possible!

▪ Also: saveAsXXXX(…)

Actions

CS 677: Big Data 15

▪ Some Spark Background

▪ Operations

▪ Persistence

▪ Spark Programming Tips

Today’s Schedule

CS 677: Big Data 16

▪ There are two main ways to “checkpoint” RDDs in your

Spark jobs

▪ rdd.cache() – persists the RDD in memory. Good for

storing the outcomes of several transformations for

further manipulation

▪ Fast… but will use memory, of course

▪ rdd.persist() – the more advanced form of persistence

Persistence [1/2]

CS 677: Big Data 17

▪ You can pass several options to rdd.persist():

▪ MEMORY_ONLY

▪ MEMORY_AND_DISK

▪ DISK_ONLY

▪ OFF_HEAP (experimental)

▪ etc

Persistence [2/2]

CS 677: Big Data 18

▪ saveAsTextFile

▪ saveAsSequenceFile() (Java + Scala)

▪ saveAsObjectFile() (Java + Scala)

▪ saveAsPickleFile (Python)

Persistence Alternatives

CS 677: Big Data 19

▪ Some Spark Background

▪ Operations

▪ Persistence

▪ Spark Programming Tips

Today’s Schedule

CS 677: Big Data 20

▪ Don’t put too much strain on your application’s driver

(Jupyter, ipython, spark shell, etc.)

▪ If you are constantly transferring data to the driver and

processing it there, you’re subverting the framework

▪ One thing I see frequently: .collect(), then iterating

through the data, then producing a new RDD

▪ Bad idea!

Pitfall 1: The Driver

CS 677: Big Data 21

▪ Caching is awesome!

▪ Except when it isn’t.

▪ If you cache too much data, you’ll run out of memory

▪ You should only cache an RDD if your logic branches

from a particular point and you want to do different

transformations on it (or iterative processing)

Pitfall 2: Caching

CS 677: Big Data 22

▪ Just like with MapReduce, MPI, BSP, etc. you have to be

careful with global state

▪ Let’s say you pass a function to .map() that operates on

a global variable in your code

▪ This might work fine on your local machine, but what

about when you run on the cluster?

▪ When distributed, the individual workers don’t know

about that global state anymore – they have their own

copy

Pitfall 3: Global State

CS 677: Big Data 23

▪ Spark unfortunately is not magic

▪ It might seem like magic after using MapReduce

▪ But be careful! It can still crash, run out of memory, and if

you use the programming model incorrectly it can be

quite slow!

Pitfall 4: Magic

CS 677: Big Data 24

