
CS 677: Big Data

Spark Streaming

CS 677: Big Data

▪ Discretized Streams

▪ Fault Tolerance

Today’s Schedule

2

CS 677: Big Data

▪ Discretized Streams

▪ Fault Tolerance

Today’s Schedule

3

CS 677: Big Data

▪ As we discussed before, pretty much any big data problem can be

viewed as a streaming problem

▪ You’ll rarely have all your data instantly in memory, so you will have to

stream it from somewhere

▪ Disk

▪ Network

▪ Kafka, storm, etc?

▪ Stream processing systems operate on this data while it is in flight

Streams

4

CS 677: Big Data

▪ Spark was originally not designed to be a stream processing system

▪ Focused on batch jobs

▪ However, RDDs lend themselves fairly well to a particular type of

streaming: microbatches

▪ Don’t operate on each individual item streaming into the system

▪ Instead, collect small batches over a window of time and process

them instead

Spark Streaming

5

CS 677: Big Data

▪ ssc = StreamingContext(sc, N)

▪ Where sc is your SparkContext

▪ N is the batch interval (number of seconds between microbatches)

▪ Once your pipeline is set up, you can execute it with:

▪ ssc.start()

▪ The computation will run forever, at least until you stop it with:

▪ ssc.stop(stopSparkContext=False)

▪ Without the parameter, your entire context is shut down and your driver will

need to be restarted

Creating a StreamingContext

6

CS 677: Big Data

▪ You can specify very small batch intervals

▪ However, you should tune your batch interval based on how fast the

stream can be processed

▪ Small interval = more processing, but more “up to date”

▪ Large interval = less processing, less frequent updates

▪ Use the web interface to check that the batch processing time is

less than the batch interval

Setting the Batch Interval

7

CS 677: Big Data

▪ Microbatches are represented as DStreams

(discretized streams)

▪ For each time step (specified by the user), Spark

generates a new RDD that represents the microbatch

DStreams

8

Source: Spark Streaming Programming Guide

CS 677: Big Data

WordCount with DStreams

9

Source: Spark Streaming Programming Guide

CS 677: Big Data

▪ Okay, so a DStream is a collection of RDDs gathered over time as data

streams into the system…

▪ …so that means they have roughly the same capabilities!

▪ Transformations are largely the same

▪ Even their laziness

▪ We don’t have terminal actions because the stream is assumed to be

infinite

▪ However, we DO have output operations like writing to a file, printing, etc.

Transformations

10

CS 677: Big Data

▪ In many cases, you’ll want your streaming jobs to maintain state

information

▪ Watching trends over time, catching and handling anomalies, etc.

▪ There are two primary ways to do this:

▪ updateStateByKey

▪ foreachRDD

Stateful Streaming

11

CS 677: Big Data

▪ Can be used to maintain state throughout the stream as

a separate DStream

▪ Sort of like a continuously-running reduce operation

▪ Takes a user function as a parameter

▪ Current RDD state

▪ Previous (potentially aggregated) RDD state

updateStateByKey

12

CS 677: Big Data

▪ Kind of like a streaming version of .collect() but generally not

as dangerous to use

▪ (stream batches tend to be on the smaller side)

▪ Applies a user function to each RDD in a DStream

on the driver

▪ Good for doing lightweight updates, drawing visualizations, etc.

foreachRDD

13

CS 677: Big Data

▪ You can also apply operations over sliding windows of data

(spanning multiple RDDs) rather than just the individual RDDs you

get every time unit

Windowed Computations

14

Source: Spark Streaming Programming Guide

CS 677: Big Data

▪ Discretized Streams

▪ Fault Tolerance

Today’s Schedule

15

CS 677: Big Data

▪ Handling failures tends to be more important in a streaming setup

▪ After all, you can’t just go back and read the data from the disk! It

may be lost completely

▪ Some stream sources, such as Kafka and HDFS do allow replay in

the case of lost events

▪ If you are going to maintain state (e.g., with updateStateByKey)

then you need to set up checkpointing

Fault Tolerance

16

CS 677: Big Data

▪ To set a checkpoint directory:

▪ ssc.checkpoint(”hdfs://location/to/store")

▪ For our purposes, you may choose to skip checkpointing to HDFS

▪ Not the end of the world if we lose data!

Checkpointing

17

CS 677: Big Data

▪ All streaming systems must choose event processing guarantees

▪ At most once: Records are processed either once or not at all.

▪ At least once: Records are processed one or more times. More

reliable, but must deal with duplicates.

▪ Exactly once: Records are processed once with no data loss or

duplicates.

Event Processing Guarantees

18

CS 677: Big Data

▪ With files, HDFS, or Kafka, inputs are guaranteed to be processed exactly

once

▪ With a general data stream, reliable receivers verify data has been

received

▪ In this case, records are processed at least once

▪ Unreliable receivers that do not verify receipt will result in loss of all

buffered data if a failure occurs

▪ In this case, records are processed at most once

Fault Tolerance: Input

19

CS 677: Big Data

▪ Output operations are processed at least once

▪ This includes writing to files or even applying a

foreachRDD operation

▪ Extra processing needs to be done if duplicates

cannot be present in the output data

Fault Tolerance: Output

20

CS 677: Big Data

▪ Much like RDDs, there is more to the story here

▪ Structured Streaming allows DataSet-like functionality over streams

▪ The tradeoff: latency and fault tolerance

▪ Structured Streaming:

▪ Exactly-once delivery

▪ High latency (could be hundreds of milliseconds)

▪ DStreams:

▪ At-least-once delivery

▪ Latencies in the low milliseconds

What’s Next?

21

