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CS 677: Big Data

▪ We’ve already talked quite a bit about features in the context of our 

datasets 

▪ But we didn’t really discuss: what are features? 

▪ In Machine Learning, a feature is a measurable property or characteristic 

▪ Choosing the right features is the most important part of machine 

learning 

▪ Feature Engineering

Features (1/2)
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▪ A feature by any other name… 

▪ Dimension 

▪ Explanatory variable 

▪ Independent variable 

▪ Collections of features are called feature vectors 

▪ Or in our dataset: observations 

▪ These come in different types

Features (2/2)
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▪ Numeric 

▪ Categorical 

▪ Boolean 

▪ String 

▪ Graph 

▪ Pixels

Some Feature Types
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▪ For today’s discussion, we will consider two types of models 

▪ Regression 

▪ (Prediction, Forecasting) 

▪ Classification 

▪ Many problems can be broken down into these two 

categories

Building Models
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▪ Statistical process for estimating the relationships between features 

▪ Dependent variables – to be predicted 

▪ Independent variables – used to make the estimation 

▪ Often called predictors 

▪ Predicting income based on job history 

▪ Estimating how much it will rain today 

▪ Determining how long a disease outbreak will last

Regression
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▪ On the other hand, maybe we want to label something based on the 

data 

▪ In some cases, we may not know what the labels are 

▪ Related: clustering 

▪ Taking features and splitting them into groups 

▪ Or for example, labeling an action in a video “sitting” 

▪ …or whether something is a hotdog or not

Classification
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Hotdog
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Not Hotdog
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1. First, choose what you want to do: predict or classify 

2. What feature (or set of features) do you want to 

predict? 

▪ These will be your dependent variables 

3. Next, choose your model

Building a Model (1/2)
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4. Choosing: 

▪ https://spark.apache.org/docs/latest/ml-classification-regression.html  

▪ Often best to start with something simple 

▪ Linear regression? 

▪ Not “cool” but surprisingly powerful 

5.  Train your model 

6. And finally, evaluate your model

Building a Model (2/2)
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▪ Let’s assume we’ve already decided on a model 

▪ Now we need to feed it with some data so it can learn 

▪ Training 

▪ We want to create a model that will generalize to new, unseen data 

points 

▪ But usually these new data points don’t exist yet (or we don’t have them)  

▪ So instead, we partition our existing dataset…

Training the Models
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▪ First step: shuffle it! 

▪ Split our dataset into two parts: 

▪ Training dataset 

▪ Test dataset 

▪ A 70/30% split is good, 90/10% is common 

▪ We want to train our model using the most data possible, but we also 

want to be able to evaluate it well 

▪ Never ever use your entire dataset to train and then test on a subset!!

Dataset Partitioning
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▪ Another take on partitioning: break the data up into k 

folds 

▪ Choose a fold, then: 

▪ k-1 remaining folds: train 

▪ k: test 

▪ Repeat for each fold

k-Fold Cross Validation
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▪ Lucky for us, Spark DataFrames have us covered: 

▪ (trainingData, testData) 
    = dframe.randomSplit([0.9, 0.1]) 

▪ This returns two DataFrames, partitioned and ready to 

go

Partitioning With Spark
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▪ We can compare how far predicted values are from the actual values 

▪ MSE = mean squared error 

▪ RMSE = root mean squared error 

▪ Describes the error in the same units 

▪ “We’re off by 2.3 days” 

▪ Warning: this can hide issues with the model 

▪ Maybe things look good on average…

Basic Model Evaluation
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▪ Most common way to visualize 

accuracy: lag plot 

▪ Plot actual vs predicted values 

▪ Same axes 

▪ The closer to the line, the 

better

Evaluation - Regression
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▪ For pattern recognition and binary classification, we can 

use precision and recall 

▪ Precision – how useful the search results are 

▪ Recall – how complete the results are 

▪ So we look at true/false positives and  true/false negatives

Evaluation - Classification
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▪ We can use Spark and other similar projects for 

distributed machine learning 

▪ However, these were designed for general use; 

applicable for a variety of problems 

▪ Recent years have seen the rise of distributed ML, 

particularly with deep learning

Distributed ML
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▪ You just spent a semester being told that shared state is going to 

negatively impact performance… 

▪ …but many (most?) ML algorithms require some level of shared state 

▪ The Parameter Server design was architected for storing and 

synchronizing state from the ground up 

▪ Initially: let’s used memcached to store this state! 

▪ Later: more optimizations, push and pull sub-model states

Parameter Server
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▪ Use Spark/MR for: 

▪ Feature exploration and extraction 

▪ Feature engineering 

▪ Ingest this data into a parameter server  

▪ Apply operations on tensors 

▪ Multidimensional array 

▪ (Note: this is a bit of a simplification) 

▪ Profit

Parameter Server Workflow
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▪ Two ways to go with distributed ML now: 

▪ TensorFlow 

▪ PyTorch 

▪ (Epic Google vs Facebook battle) 

▪ Both of these can exploit GPUs, have easy-ish 

frontends, lots of built-in models and functionality

Frameworks
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▪ You may have heard of  Google’s Tensor Processing Units (TPUs) 

▪ What are these things? 

▪ ASICs – application-specific integrated circuits 

▪ Think along the lines of specialized crypto mining hardware 

▪ Basically, a specialized hardware component for doing lots of 

low-precision calculations

TPUs
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▪ We have tensors of our data 

▪ Each operator takes a tensor as input and produces a tensor as 

output 

▪ Tensors organized in a dataflow graph 

▪ Vertex: operator 

▪ Edge: tensor 

▪ See: https://www.tensorflow.org/about/bib 

TensorFlow
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Architecture
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Dataflow Graph
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▪ MapReduce is a much more constrained type of dataflow graph 

▪ Requirement for round trips to HDFS make machine learning 

difficult 

▪ Spark requires immutability and a deterministic flow of operations 

▪ Parameter servers may be less flexible, makes assumptions about 

model state

Feature Comparison
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▪ Mutable state 

▪ Less stringent consistency guarantees, meaning fault tolerance 

can be relaxed somewhat 

▪ Many ML algorithms are resilient to inconsistency 

(this was actually one of the main takeaways from DistBelief and 

the Parameter Server) 

▪ Support for GPUs and Tensor Processing Units (TPUs) baked in

Distinguishing Features
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▪ Using TensorFlow is quite nice – Python API 

▪ Extending TensorFlow can be done in C++ 

▪ Well-known by developers 

▪ High performance 

▪ Each operator can have multiple implementations depending on hardware 

▪ Run on CPU, GPU, TPU, etc 

▪ Great for dealing with heterogeneous clusters

APIs

29



CS 677: Big Data

▪ TensorFlow is probably better suited for ML applications than 

Spark, Flink, etc. 

▪ It’s designed for ML rather than general distributed computation 

▪ We have to deal with a trade-off here: is integrating our feature 

extraction/exploration/engineering with model building important? 

▪ We can also combine these…

Spark vs Tensorflow
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▪ There are a few examples of using Spark to parallelize 

individual TensorFlow jobs  

▪ For instance, searching for the best parameters: Spark 

runs multiple TF instances 

▪ You could potentially pass data to TF from the Hadoop 

Reduce phase (?)

Spark + TensorFlow
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▪ TF Lite can be used to deploy models to mobile 

devices, IoT nodes, fog nodes, etc 

▪ Training is done on a powerful cluster of machines 

▪ The trained model is transferred to the device and 

used to predict/classify/etc.

TensorFlow Lite
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