
CS 677: Big Data

Distributed ML

CS 677: Big Data

▪ We’ve already talked quite a bit about features in the context of our

datasets

▪ But we didn’t really discuss: what are features?

▪ In Machine Learning, a feature is a measurable property or characteristic

▪ Choosing the right features is the most important part of machine

learning

▪ Feature Engineering

Features (1/2)

2

CS 677: Big Data

▪ A feature by any other name…

▪ Dimension

▪ Explanatory variable

▪ Independent variable

▪ Collections of features are called feature vectors

▪ Or in our dataset: observations

▪ These come in different types

Features (2/2)

3

CS 677: Big Data

▪ Numeric

▪ Categorical

▪ Boolean

▪ String

▪ Graph

▪ Pixels

Some Feature Types

4

CS 677: Big Data

▪ For today’s discussion, we will consider two types of models

▪ Regression

▪ (Prediction, Forecasting)

▪ Classification

▪ Many problems can be broken down into these two

categories

Building Models

5

CS 677: Big Data

▪ Statistical process for estimating the relationships between features

▪ Dependent variables – to be predicted

▪ Independent variables – used to make the estimation

▪ Often called predictors

▪ Predicting income based on job history

▪ Estimating how much it will rain today

▪ Determining how long a disease outbreak will last

Regression

6

CS 677: Big Data

▪ On the other hand, maybe we want to label something based on the

data

▪ In some cases, we may not know what the labels are

▪ Related: clustering

▪ Taking features and splitting them into groups

▪ Or for example, labeling an action in a video “sitting”

▪ …or whether something is a hotdog or not

Classification

7

CS 677: Big Data

Hotdog

8

CS 677: Big Data

Not Hotdog

9

CS 677: Big Data

1. First, choose what you want to do: predict or classify

2. What feature (or set of features) do you want to

predict?

▪ These will be your dependent variables

3. Next, choose your model

Building a Model (1/2)

10

CS 677: Big Data

4. Choosing:

▪ https://spark.apache.org/docs/latest/ml-classification-regression.html

▪ Often best to start with something simple

▪ Linear regression?

▪ Not “cool” but surprisingly powerful

5. Train your model

6. And finally, evaluate your model

Building a Model (2/2)

11

https://spark.apache.org/docs/latest/ml-classification-regression.html

CS 677: Big Data

▪ Let’s assume we’ve already decided on a model

▪ Now we need to feed it with some data so it can learn

▪ Training

▪ We want to create a model that will generalize to new, unseen data

points

▪ But usually these new data points don’t exist yet (or we don’t have them)

▪ So instead, we partition our existing dataset…

Training the Models

12

CS 677: Big Data

▪ First step: shuffle it!

▪ Split our dataset into two parts:

▪ Training dataset

▪ Test dataset

▪ A 70/30% split is good, 90/10% is common

▪ We want to train our model using the most data possible, but we also

want to be able to evaluate it well

▪ Never ever use your entire dataset to train and then test on a subset!!

Dataset Partitioning

13

CS 677: Big Data

▪ Another take on partitioning: break the data up into k

folds

▪ Choose a fold, then:

▪ k-1 remaining folds: train

▪ k: test

▪ Repeat for each fold

k-Fold Cross Validation

14

CS 677: Big Data

▪ Lucky for us, Spark DataFrames have us covered:

▪ (trainingData, testData)
 = dframe.randomSplit([0.9, 0.1])

▪ This returns two DataFrames, partitioned and ready to

go

Partitioning With Spark

15

CS 677: Big Data

▪ We can compare how far predicted values are from the actual values

▪ MSE = mean squared error

▪ RMSE = root mean squared error

▪ Describes the error in the same units

▪ “We’re off by 2.3 days”

▪ Warning: this can hide issues with the model

▪ Maybe things look good on average…

Basic Model Evaluation

16

CS 677: Big Data

▪ Most common way to visualize

accuracy: lag plot

▪ Plot actual vs predicted values

▪ Same axes

▪ The closer to the line, the

better

Evaluation - Regression

17

CS 677: Big Data

▪ For pattern recognition and binary classification, we can

use precision and recall

▪ Precision – how useful the search results are

▪ Recall – how complete the results are

▪ So we look at true/false positives and true/false negatives

Evaluation - Classification

18

CS 677: Big Data

▪ We can use Spark and other similar projects for

distributed machine learning

▪ However, these were designed for general use;

applicable for a variety of problems

▪ Recent years have seen the rise of distributed ML,

particularly with deep learning

Distributed ML

19

CS 677: Big Data

▪ You just spent a semester being told that shared state is going to

negatively impact performance…

▪ …but many (most?) ML algorithms require some level of shared state

▪ The Parameter Server design was architected for storing and

synchronizing state from the ground up

▪ Initially: let’s used memcached to store this state!

▪ Later: more optimizations, push and pull sub-model states

Parameter Server

20

CS 677: Big Data

▪ Use Spark/MR for:

▪ Feature exploration and extraction

▪ Feature engineering

▪ Ingest this data into a parameter server

▪ Apply operations on tensors

▪ Multidimensional array

▪ (Note: this is a bit of a simplification)

▪ Profit

Parameter Server Workflow

21

CS 677: Big Data

▪ Two ways to go with distributed ML now:

▪ TensorFlow

▪ PyTorch

▪ (Epic Google vs Facebook battle)

▪ Both of these can exploit GPUs, have easy-ish

frontends, lots of built-in models and functionality

Frameworks

22

CS 677: Big Data

▪ You may have heard of Google’s Tensor Processing Units (TPUs)

▪ What are these things?

▪ ASICs – application-specific integrated circuits

▪ Think along the lines of specialized crypto mining hardware

▪ Basically, a specialized hardware component for doing lots of

low-precision calculations

TPUs

23

CS 677: Big Data

▪ We have tensors of our data

▪ Each operator takes a tensor as input and produces a tensor as

output

▪ Tensors organized in a dataflow graph

▪ Vertex: operator

▪ Edge: tensor

▪ See: https://www.tensorflow.org/about/bib

TensorFlow

24

https://www.tensorflow.org/about/bib

CS 677: Big Data

Architecture

25

CS 677: Big Data

Dataflow Graph

26

CS 677: Big Data

▪ MapReduce is a much more constrained type of dataflow graph

▪ Requirement for round trips to HDFS make machine learning

difficult

▪ Spark requires immutability and a deterministic flow of operations

▪ Parameter servers may be less flexible, makes assumptions about

model state

Feature Comparison

27

CS 677: Big Data

▪ Mutable state

▪ Less stringent consistency guarantees, meaning fault tolerance

can be relaxed somewhat

▪ Many ML algorithms are resilient to inconsistency

(this was actually one of the main takeaways from DistBelief and

the Parameter Server)

▪ Support for GPUs and Tensor Processing Units (TPUs) baked in

Distinguishing Features

28

CS 677: Big Data

▪ Using TensorFlow is quite nice – Python API

▪ Extending TensorFlow can be done in C++

▪ Well-known by developers

▪ High performance

▪ Each operator can have multiple implementations depending on hardware

▪ Run on CPU, GPU, TPU, etc

▪ Great for dealing with heterogeneous clusters

APIs

29

CS 677: Big Data

▪ TensorFlow is probably better suited for ML applications than

Spark, Flink, etc.

▪ It’s designed for ML rather than general distributed computation

▪ We have to deal with a trade-off here: is integrating our feature

extraction/exploration/engineering with model building important?

▪ We can also combine these…

Spark vs Tensorflow

30

CS 677: Big Data

▪ There are a few examples of using Spark to parallelize

individual TensorFlow jobs

▪ For instance, searching for the best parameters: Spark

runs multiple TF instances

▪ You could potentially pass data to TF from the Hadoop

Reduce phase (?)

Spark + TensorFlow

31

CS 677: Big Data

▪ TF Lite can be used to deploy models to mobile

devices, IoT nodes, fog nodes, etc

▪ Training is done on a powerful cluster of machines

▪ The trained model is transferred to the device and

used to predict/classify/etc.

TensorFlow Lite

32

