
Docs Community Blog GET STARTED

SEPTEMBER 16, 2019

Comparing Database Types: How
Database Types Evolved to Meet
Different Needs

Join the
discussion

Many types of databases exist, each with their own benefits. In this
guide, we'll compare the relational, document, key-value, graph, and
wide-column databases and talk about what each of them offer.

Database types, sometimes referred to as database models or database families, are

the patterns and structures used to organize data within a database management

system. Many different database types have been developed over the years. Some are

mainly historic predecessors to current databases, while others have stood the test of

time. In the last few decades, new types have been developed to address changing

requirements and different use patterns.

Your choice of database type can have a profound impact on what kind of operations

your application can easily perform, how you conceptualize your data, and the features

that your database management system offers you during development and runtime. In

this guide, we'll take a look at how database types have evolved over time and what

advantages and trade-offs are present in each design.

Products

Justin Ellingwood
@jmellingwood

10

Legacy databases: paving the way for modern
systems

https://www.prisma.io/
https://prisma.io/docs
https://www.prisma.io/community
https://www.prisma.io/blog/
https://www.prisma.io/docs/quickstart/
https://twitter.com/jmellingwood
https://twitter.com/search?q=https%3A%2F%2Fprisma.io%2Fblog%2Fcomparison-of-database-models-1iz9u29nwn37%20OR%20https%3A%2F%2Fwww.prisma.io%2Fblog%2Fcomparison-of-database-models-1iz9u29nwn37%20OR%20https%3A%2F%2Fprisma.io%2Fblog%2F1iz9u29nwn37%20OR%20https%3A%2F%2Fwww.prisma.io%2Fblog%2F1iz9u29nwn37

Legacy database types represent milestones on the path to modern databases. These

may still find a foothold in certain specialized environments, but have mostly been

replaced by more robust alternatives for production environments.

This section is dedicated to historic database types that aren't used much in modern

development. You can skip ahead to the section on relational databases if you aren't

interested in that background.

The simplest way to manage data on a computer outside of an application is to store it

in a basic file format. The first solutions for data management used this approach and it

is still a popular option for storing small amounts of information without heavy

requirements.

The first flat file databases represented information in regular, machine parse-able

structures within files. Data is stored in plain text, which limits the type of content that

can be represented within the database itself. A special character or other indicator is

chosen to use as a delimiter, or marker for when one field ends and the next begins. For

example, a comma is used in CSV (comma-separated values) files, while colons or white-

space are used in many data files in Unix-like systems.

/etc/passwd on *nix systems:

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin
mail:x:8:8:mail:/var/mail:/usr/sbin/nologin
news:x:9:9:news:/var/spool/news:/usr/sbin/nologin
backup:x:34:34:backup:/var/backups:/usr/sbin/nologin
list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin

Flat-file databases: simple data structures for organizing small
amounts of local data

https://en.wikipedia.org/wiki/Unix-like

nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin
syslog:x:102:106::/home/syslog:/usr/sbin/nologin
bob:x:1000:1000:Bob Smith,,,:/home/bob:/bin/bash

The /etc/passwd file defines users, one per line. Each user has attributes like name, user

and group IDs, home directory and default shell, each separated by a colon.

While flat file databases are simple, they are very limited in the level of complexity they

can handle. The system that reads or manipulates the data cannot make easy

connections between the data represented. File-based systems usually don't have any

type of user or data concurrency features either. Flat file databases are usually only

practical for systems with small read or write requirements. For example, many

operating systems use flat-files to store configuration data.

In spite of these limitations, flat-file databases are still widely used for scenarios where

local processes need to store and organized small amounts of data. A good example of

this is for configuration data for many applications on Linux and other Unix-like

systems. In these cases, the flat-file format serves as an interface that both humans and

applications can easily read and manage. Some advantages of this format are that it has

robust, flexible tooling, is easily managed without specialized software, and is easy to

understand and work with.

Examples:

 and on Linux and Unix-like systems

CSV files

Initial introduction: 1960s

Hierarchical databases were the next evolution in database management development.

They encode a relationship between items where every record has a single parent. This

builds a tree-like structure that can be used to categorize records according to their

•
•
Hierarchical databases: using parent-child relationships to map data
into trees

/etc/passwd /etc/fstab

https://en.wikipedia.org/wiki/Passwd#Password_file
https://en.wikipedia.org/wiki/Fstab
https://en.wikipedia.org/wiki/Comma-separated_values

parent record.

Diagram of a hierarchical database

This simple relationship mapping provides users with the ability to establish

relationships between items in a tree structure. This is very useful for certain types of

data, but does not allow for complex relationship management. Furthermore, the

meaning of the parent-child relationship is implicit. One parent-child connection could

be between a customer and their orders, while another might represent an employee

and the equipment they have been allocated. The structure of the data itself does not

distinguish between these relationships.

Hierarchical databases are the beginning of a movement towards thinking about data

management in more complex terms. The trajectory of database management systems

that were developed afterwards continues this trend.

Hierarchical databases are not used much today due to their limited ability to organize

most data and because of the overhead of accessing data by traversing the hierarchy.

However, a few incredibly important systems could be considered hierarchical

databases. A filesystem, for instance, can be thought of as a specialized hierarchical

database, as the system of files and directories fit neatly into the single-parent /

multiple-child paradigm. Likewise, DNS and LDAP systems both act as databases for

hierarchical datasets.

Examples:

Filesystems

DNS

•
•

https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Domain_Name_System

LDAP directories

Initial introduction: late 1960s

Network databases built on the foundation provided by hierarchical databases by

adding additional flexibility. Instead of always having a single parent, as in hierarchical

databases, network database entries can have more than one parent, which effectively

allows them to model more complex relationships. When talking about network

databases, it is important to realize that network is being used to refer to connections

between different data entries, not connections between different computers or

software.

Diagram of a network database

Network databases can be represented by a generic graph instead of a tree. The

meaning of the graph was defined by a schema, which lays out what each data node

and each relationship represents. This gave structure to the data in a way that could

previously only be reached through inference.

Definition: SchemaDefinition: Schema

A database schema is a description of the logical structure of a database or the elements

it contains. Schemas often include declarations for the structure of individual entries,

groups of entries, and the individual attributes that database entries are comprised of.

•
Network databases: mapping more flexible connections with non-
hierarchical links

https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol

These may also define data types and additional constraints to control the type of data

that may be added to the structure.

Network databases were a huge leap forward in terms of flexibility and the ability to

map connections between information. However, they were still limited by the same

access patterns and design mindset of hierarchical databases. For instance, to access

data, you still needed to follow the network paths to the record in question. The parent-

child relationship carried over from hierarchical databases also affected the way that

items could connect to one another.

It is difficult to find modern examples of network database systems. Setting up and

working with network databases required a good deal of skill and specialized domain

knowledge. Most systems that could be approximated using network databases found a

better fit once relational databases appeared.

Examples:

IDMS

Initial introduction: 1969

Relational databases are the oldest general purpose database type still widely used

today. In fact, relational databases comprise the majority of databases currently used in

production.

Relational databases organize data using tables. Tables are structures that impose a

schema on the records that they hold. Each column within a table has a name and a data

type. Each row represents an individual record or data item within the table, which

contains values for each of the columns. Relational databases get their name from the

fact that relationships can be defined between tables.

•

Relational databases: working with tables as a
standard solution to organize well-structured data

https://en.wikipedia.org/wiki/IDMS
https://db-engines.com/en/ranking_categories

Diagram of relational schema used to map entities for a school

Special fields in tables, called foreign keys, can contain references to columns in other

tables. This allows the database to bridge the two tables on demand to bring different

types of data together.

The highly organized structure imparted by the rigid table structure, combined with the

flexibility offered by the relations between tables makes relational databases very

powerful and adaptable to many types of data. Conformity can be enforced at the table

level, but database operations can combine and manipulate that data in novel ways.

While not inherent to the design of relational databases, a querying language called

SQL, or structured query language, was created to access and manipulate data stored

with that format. It can query and join data from multiple tables within a single

statement. SQL can also filter, aggregate, summarize, and limit the data that it returns.

So while SQL is not a part of the relational system, it is often a fundamental part of

working with these databases.

Definition: SQLDefinition: SQL

SQL, or structured querying language, is a language family used to query and manipulate

data within relational databases. It excels at combining data from multiple tables and

filtering based on constraints which allow it to be used to express complex queries.

Variants of the language has been adopted by almost all relational databases due to its

flexibility, power, and ubiquity.

In general, relational databases are often a good fit for any data that is regular,

predictable, and benefits from the ability to flexibly compose information in various

formats. Because relational databases work off of a schema, it can be more challenging

to alter the structure of data after it is in the system. However, the schema also helps

enforce the integrity of the data, making sure values match the expected formats, and

that required information is included. Overall, relational databases are a solid choice for

many applications because applications often generate well-ordered, structured data.

Examples:

MySQL

MariaDB

PostgreSQL

SQLite

NoSQL is a term for a varied collection of modern database types that offer approaches

that differ from the standard relational pattern. The term NoSQL is somewhat of a

misnomer since the databases within this category are more of a reaction against the

relational archetype rather than the SQL querying language.

•
•
•
•

NoSQL databases: modern alternatives for data that
doesn't fit the relational paradigm

Key-value databases: simple, dictionary-style lookups for basic
storage and retrieval

https://www.mysql.com/
https://mariadb.org/
https://www.postgresql.org/
https://www.sqlite.org/index.html

Initial introduction: 1970s | Rise in popularity: 2000-2010

Key-value databases, or key-value stores, are one of the simplest database types. Key-

value stores work by storing arbitrary data accessible through a specific key. To store

data, you provide a key and the blob of data you wish to save, for example a JSON

object, an image, or plain text. To retrieve data, you provide the key and will then be

given the blob of data back. The database does not evaluate the data it is storing and

allows limited ways of interacting with it.

Diagram of key-value data store

If key-value stores appear simple, it's because they are. But that simplicity is often an

asset in the kinds of scenarios where they are most often deployed. Key-value stores are

often used to store configuration data, state information, and any data that might be

represented by a dictionary or hash in a programming language. Key-value stores

provide fast, low-complexity access to this type of data.

Key-value databases don't prescribe any schema for the data they store, and as such,

are often used to store many different types of data at the same time. The user is

responsible for defining any naming scheme for the keys that will help identify the

values and are responsible for ensuring the value is of the appropriate type and format.

Key-value storage is most useful as a lightweight solution for storing simple values that

can be operated on externally after retrieval.

One of the most popular uses for key-value databases are to store configuration values

and application variables and flags for websites and web applications. Programs can

check the key-value store, which is usually very fast, for their configuration when they

start. This allows you to alter the runtime behavior of your services by changing the data

in the key-value store. Applications can also be configured to recheck periodically or to

restart when they see changes. These configuration stores are often persisted to disk

periodically to prevent loss of data in the event of a system crash.

Examples:

Redis

memcached

etcd

Rise in popularity: 2009

Document databases, also known as document-oriented databases or document stores,

share the basic access and retrieval semantics of key-value stores. Document databases

also use a key to uniquely identify data within the database. In fact, the line between

advanced key-value stores and document databases can be fairly unclear. However,

instead of storing arbitrary blobs of data, document databases store data in structured

formats called documents, often using formats like JSON, BSON, or XML.

Diagram of document database

Though the data within documents is organized within a structure, document databases

do not prescribe any specific format or schema. Each document can have a different

internal structure that the database interprets. So, unlike with key-value stores, the

•
•
•
Document databases: Storing all of an item's data in flexible, self-
describing structures

https://redis.io/
https://memcached.org/
https://etcd.io/

content stored in document databases can be queried and analyzed.

In some ways, document databases sit in between relational databases and key-value

stores. They use the simple key-value semantics and loose requirements on data that

key-value stores are known for, but they also provide the ability to impose a structure

that you can use to query and operate on the data in the future.

The comparison with relational databases shouldn't be overstated, however. While

document databases provide methods of structuring data within documents and

operating on datasets based on those structures, the guarantees, relationships, and

operations available are very different from relational databases.

Document databases are a good choice for rapid development because you can change

the properties of the data you want to save at any point without altering existing

structures or data. You only need to backfill records if you want to. Each document

within the database stands on its own with its own system of organization. If you're still

figuring out your data structure and your data is mainly composed discrete entries that

don't include a lot of cross references, a document database might be a good place to

start. Be careful, however, as the extra flexibility means that you are responsible for

maintaining the consistency and structure of your data, which can be extremely

challenging.

Examples:

MongoDB

RethinkDB

Couchbase

Rise in popularity: 2000s

Graph databases are a type of NoSQL database that takes a different approach to

establishing relationships between data. Rather than mapping relationships with tables

•
•
•
Graph databases: mapping relationships by focusing on how
connections between data are meaningful

https://www.mongodb.com/
https://rethinkdb.com/
https://www.couchbase.com/

and foreign keys, graph databases establish connections using the concepts of nodes,

edges, and properties.

Diagram of a graph database structure

Graph databases represents data as individual nodes which can have any number of

properties associated with them. Between these nodes, edges (also called relationships)

are established to represent different types of connections. In this way, the database

encodes information about the data items within the nodes and information about their

relationship in the edges that connect the nodes.

At a glance, graph databases appear similar to earlier network databases. Both types

focus on the connections between items and allow for explicit mapping of relationships

between different types of data. However, network databases require step-by-step

traversal to travel between items and are limited in the types of relationships they can

represent.

Graph databases are most useful when working with data where the relationships or

connections are highly important. It is essential to understand that when talking about

relational databases, the word "relational" refers to the ability to tie information in

different tables together. On the other hand, with graph databases, the primary

purpose is defining and managing relationships themselves.

For example, querying for the connection between two users of a social media site in a

relational database is likely to require multiple table joins and therefore be rather

resource intensive. This same query would be straightforward in a graph database that

directly maps connections. The focus of graph databases is to make working this type of

data intuitive and powerful.

Neo4j

Titan

Rise in popularity: 2000s

Column-family databases, also called non-relational column stores, wide-column

databases, or simply column databases, are perhaps the NoSQL type that, on the

surface, looks most similar to relational databases. Like relational databases, wide-

column databases store data using concepts like rows and columns. However, in wide-

column databases, the association between these elements is very different from how

relational databases use them.

In relational databases, a schema defines the column layout in a table by specifying

what columns the table will have, their respective data types, and other criteria. All of

the rows in a table must conform to this fixed schema.

Instead of tables, column-family databases have structures called column families.

Column families contain rows of data, each of which define their own format. A row is

composed of a unique row identifier — used to locate the row — followed by sets of

column names and values.

•
•
Column-family databases: databases with flexible columns to bridge
the gap between relational and document databases

https://neo4j.com/
https://titan.thinkaurelius.com/

With this design, each row in a column family defines its own schema. That schema can

be easily modified because it only affects that single row of data. Each row can have

different numbers of columns with different types of data. Sometimes it helps to think

of column family databases as key-value databases where each key (row identifier)

returns a dictionary of arbitrary attributes and their values (the column names and their

values).

Diagram of column-family database structure

Column-family databases are good when working with applications that requires great

performance for row-based operations and highly scalability. Since all of the data and

metadata for an entry is accessible with a single row identifier, no computationally

expensive joins are required to find and pull the information. The database system also

typically makes sure all of the data in a row is collocated on the same machine in a

cluster, simplifying data sharding and scaling.

However, column-family databases do not work well in all scenarios. If you have highly

relational data that requires joins, this is not the right type of database for your

application. Column-family databases are firmly oriented around row-based operations.

This means that aggregate queries like summing, averaging, and other analytics-

oriented processes can be difficult or impossible. This can have a great impact on how

you design your applications and what types of usage patterns you can use.

Examples:

Cassandra

HBase

Rise in popularity: 2010s

NoSQL databases are great options for situations where your data does not fit neatly

into the relational pattern. Since they were developed more recently, NoSQL systems

tend to be designed with scalability and modern performance requirements in mind.

However, until recently, no solution existed to easily scale relational data. To address

this need, a new type of relational databases called NewSQL databases were developed.

NewSQL databases follow the relational structure and semantics, but are built using

more modern, scalable designs. The goal is to offer greater scalability than relational

databases and greater consistency guarantees than NoSQL alternatives. They achieve this

by sacrificing certain amounts of availability in the event of a networking partition. The

trade offs between consistency and availability is a fundamental problem of distributed

databases described by the CAP theorem.

Definition: CAP TheoremDefinition: CAP Theorem

The CAP theorem is a statement about the trade offs that distributed databases must

•
•

NewSQL databases: bringing modern scalability and
performance to the traditional relational pattern

https://cassandra.apache.org/
https://hbase.apache.org/

make between availability and consistency. It asserts that in the event of a network

partition, a distributed database can choose either to remain available or remain

consistent, but it cannot do both. Cluster members in a partitioned network can continue

operating, leading to at least temporary inconsistency. Alternatively, at least some of the

disconnected members must refuse to alter their data during the partition to ensure data

consistency.

To address the availability concern, new architectures were developed to minimize the

impact of partitions. For instance, splitting data sets into smaller ranges called shards

can minimize the amount of data that is unavailable during partitions. Furthermore,

mechanisms to automatically alter the roles of various cluster members based on

network conditions allow them to regain availability quickly.

Because of these qualities, NewSQL databases are best suited for use cases with high

volumes of relational data in distributed, cloud-like environments.

While NewSQL databases offer most of the familiar features of conventional relational

databases, there are some important differences that prevent it from being a one-to-

one replacement. NewSQL systems are typically less flexible and generalized than their

more conventional relational counterparts. They also usually only offer a subset of full

SQL and relational features, which means that they might not be able to handle certain

kinds of usage. Many NewSQL implementations also store a large part of or their entire

dataset in the computer's main memory. This improves performance at the cost of

greater risk to unpersisted changes.

NewSQL databases are a good fit for relational datasets that require scaling beyond

what conventional relational databases can offer. Because they implement the

relational abstraction and provide SQL interfaces, transitioning to a NewSQL database is

often more straightforward than moving to a NoSQL alternative. However, it's important

to keep in mind that although they mostly seek to replicate the conventional relational

environments, there are differences that may affect your deployments. Be sure to

research these differences and identify situations where the resemblance breaks down.

Examples:

MemSQL

VoltDB

Spanner

Calvin

CockroachDB

FaunaDB

yugabyteDB

Database types have changed a lot since their initial introduction and new database

ideas are actively being developed today. Each of the types used in modern systems

have distinct advantages that are worth exploring given the right access patterns, data

properties, and requirements. One of the first and most important decisions when

starting a new project is evaluating your needs and finding the type that matches your

project's demands.

Many times, using a mixture of different database types is the best approach for

handling the data of your projects. Your applications and services will influence the type

of data being generated as well as the features and access patterns you require. For

example, user information for your system might fit best in a relational database, while

the configuration values for your services might benefit from an in-memory key-value

store. Learning what each type of database offers can help you recognize which systems

are best for all of your different types of data.

Don’t miss the next post!

your@email.com JOIN

•
•
•
•
•
•
•

Conclusion

https://www.memsql.com/
https://www.voltdb.com/
https://en.wikipedia.org/wiki/Spanner_(database)
https://blog.acolyer.org/2019/03/29/calvin-fast-distributed-transactions-for-partitioned-database-systems/
https://www.cockroachlabs.com/
https://fauna.com/
https://www.yugabyte.com/

