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A B S T R A C T

High performance querying and ad-hoc querying are commonly viewed as mutually exclusive goals in massively
parallel processing databases. Furthermore, there is a contradiction between ease of extending the data model
and ease of analysis. The modern 'Data Lake' approach, promises extreme ease of adding new data to a data
model, however it is prone to eventually becoming a Data Swamp – unstructured, ungoverned, and out of
control Data Lake where due to a lack of process, standards and governance, data is hard to find, hard to use and
is consumed out of context. This paper introduces a novel technique, highly normalized Big Data using Anchor
modeling, that provides a very efficient way to store information and utilize resources, thereby providing ad-hoc
querying with high performance for the first time in massively parallel processing databases. This technique is
almost as convenient for expanding data model as a Data Lake, while it is internally protected from
transforming to Data Swamp. A case study of how this approach is used for a Data Warehouse at Avito over
a three-year period, with estimates for and results of real data experiments carried out in HP Vertica, an MPP
RDBMS, is also presented. This paper is an extension of theses from The 34th International Conference on
Conceptual Modeling (ER 2015) (Golov and Rönnbäck 2015) [1], it is complemented with numerical results
about key operating areas of highly normalized big data warehouse, collected over several (1–3) years of
commercial operation. Also, the limitations, imposed by using a single MPP database cluster, are described, and
cluster fragmentation approach is proposed.

1. Background

Big Data analytics is rapidly becoming a commonplace task for
many companies. For example, banks, telecommunication companies,
and big web companies, such as Google, Facebook, and Twitter,
produce large amounts of data. Nowadays, business users also know
how to monetize such data. For example, various predictive marketing
techniques can transform data about customer behavior into great
monetary worth. The main issue, however, remains the implementa-
tion of platforms fast enough to load, store and execute ad-hoc
analytical queries over Big Data [2].

Big Data is commonly defined using the “3Vs”: Volume (large
amounts of data), Variety (various forms and evolving structure), and
Velocity (rapid generation, capturing, and consumption). Until now,
Hadoop has been considered a universal solution, because it can solve
issues of Volume and Velocity by almost unlimited horizontal scaling,
while the issue of Variety can be solved by storing data without schema
(schema-less databases).

The Data Lake approach was proposed as an ideal method of
building Big Data infrastructure: create a single store (“lake”) of all

available data, structured and unstructured. Store all available data,
without spending time and resources on modeling or structuring. The
term “single” means that all types of data from various sources can be
combined and analyzed together to test various hypothesis. Hadoop
offers a relatively cheap way of scaling such single store according to
growing volumes and velocities (you can pay just for hardware, no
additional licensing fees).

As the first implementations of Data Lake were launched, it turned
out, that schema-less data storage is really a fake. Schema-less storage
just replaces the need to structure data “on write” with the necessity to
structure them “on read”. So, not “schema-less” against “schema-on-
write”, but “schema-on-read” against “schema-on-write”. In a short
term perspective “schema-on-read” sounds promising. But if data over
a long time period must be analyzed, than a risk of schema changes is
possible. In addition, there is a risk of analyzing the same data
differently by different analysts, because of different schemes on read.
So, as time passes, Data Lake is prone to transform into “Data Swamp”
– unstructured, ungoverned, and out of control Data Lake where due to
a lack of process, standards and governance, data is hard to find, hard
to use and is consumed out of context.
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Therefore, even Data Lake approach does not eliminate the need to
model and structure incoming big data. It enables to put the process of
modeling aside, for a short period of time.

Speaking of performance, basic technologies of Hadoop, such as
HDFS, MapReduce, Pig and Hive, are cheap and scalable, but they have
their own drawbacks, especially in their ability to process difficult
queries (big join), to support fast ad-hoc analysis [3].

This paper introduces a new processing approach, using Anchor
modeling in massively parallel processing (MPP) databases. The
approach simplifies and automates tasks of data modeling and data
structuring, so it helps to face the issue of Variety of Big Data, without
putting it aside, as Data Lake approach does. The approach signifi-
cantly increases the volume of data that can be analyzed within a given
time frame. It has been implemented in HP Vertica [4], a column-
oriented MPP RDBMS, and is used on a daily basis for fast ad-hoc
query processing at Avito, a popular Russian web site for classified ads
[5] connecting millions of buyers and sellers on a daily basis. The
approach gives its data scientists an ability to execute complex queries
that process terabytes of data in minutes. The approach is generic and
should apply equally well to other MPP databases, such as Pivotal
Greenplum, Actian Matrix, and Amazon Redshift.

This paper is an extension of an initial paper, presented at The 34th
International Conference on Conceptual Modeling (ER 2015) [1].
Initial paper, which was focused mostly on performance and optimiza-
tion issues, solved in the first two years of adopting the approach.
Extensions were added after one more year of developing the approach,
after several attempts of adopting it for other companies. During this
year, the Anchor modeling-based data warehouse of Avito were
expanded with data from dozens of heterogeneous source systems
and turned into some kind of structured Data Lake.The extension
contains a checklist for adopting Anchor Modeling on some MPP
database. It also describes limitations, imposed by using a single MPP
database cluster to operate the ever-increasing set of tables.

2. The Avito case for normalized Big Data

Based in Moscow, Avito is Russia's fastest growing e-commerce site
and portal, “Russia's Craiglist”. It is growing ≈50% a year and is now
second only to Craiglist and Chinese site 58 in the rating of classified
sites [5]. Its number of unique daily visitors in the middle of 2016 is 6
times higher, than in the middle of 2013. Avito's monetization is based
on data and data analysis. Avito stores all types of data into its data
warehouse. There are over 20 streams of data:

• Data from OLTP systems
– CRM
– Payment systems
– Back-office system of a main site
– Back-office system of side-sites (specialized vertical classifieds)

• Clickstream data
– Clickstream (all clicks and actions of a site visitors, up to 1bln.

records a day), desktop and API
– Logs of DSP/SSP systems (online ads).
– Logs of CTR prediction auctions (online ads).
– Logs of email and sms sending systems (SendGrid).

• External data
– Social media data
– Open data sources (of government, of enterprises)
– API data of partners

In terms of 3Vs, Avito clickstream data have over 1 billion user
actions a day (Volume). User profiles, which help to reject non-humans
and generate personalized content, have to be recalculated in near real-
time, as a CTR prediction coefficients (Velocity). The business model of
Avito is constantly evolving, where new features are constantly added,
which affects both, OLTP and a click stream data (Variety). Regarding

Variety, social media data are also a great example – their data model is
constantly evolving without notifications.

There are dozens of data analysis cases, applicable for the data,
described above. Clickstreams are analyzed to understand traffic, the
number of unique visitors, sessions, and page views. Clickstreams of
groups of users often follow distinct patterns, the knowledge of which
may help in providing customized content [6]. They may, however, also
be generated by a non-human activity. Fake identities and Sybil
accounts are responsible for a growing number of threats, including
fake product reviews, malware, and spam on social networks. Similar
clickstreams can be grouped into behavioral clusters to detect and
eliminate non-human accounts [7]. Identification and elimination of a
non-human activity is important in all analytical tasks, such as proper
traffic estimation and pattern detection. It may also have significant
reputational, ethical, and even legal effects if left unattended.

Clickstream analysis was one of the main defined objectives for the
Data Warehouse at Avito.

The BI team at Avito was challenged to develop a scalable Data
Warehouse, that could grow in volume and complexity together with
their business model, while being able to support analytical workloads,
such as clustering analysis, correlation analysis, A/B testing (two-
sample hypothesis testing), and Data Mining Algorithms. Hadoop and
other NoSQL approaches were rejected in the process, and instead an
MPP relational database, HP Vertica [4], and highly normalized data
model, Anchor Modeling [8], were selected.

2.1. Anchor modeling

Anchor modeling [8] is a database modeling technique resulting in
implementations where tables are in 6NF, the sixth normal form.
Entities and relationships in Anchor modeling are highly decomposed.
In 6NF tables have no non-trivial join dependencies [9], making tables
narrow with few columns in comparison to, for example, the wide
tables of 3NF. The traditional concept of an entity is thereby spread out
over many tables, referred to as an ensemble [10]. Massively parallel
processing databases generally have shared-nothing scale-out archi-
tectures, such that each node holds some subset of the database and
enjoy a high degree of autonomy with respect to executing parallelized
parts of queries. In order to maximize utilization, each node should
perform as much of its assigned work as possible without the
involvement of other nodes. The following four constructs are used in
Anchor modeling, all having a predefined distribution.

Anchor, table holding surrogate identifiers for instances of an
ensemble. Each instance in the modeled domain has its own unique
surrogate identifier and they are stored in anchors. Surrogate identi-
fiers are immutable and assumed as the only part of an instance that
cannot change over time. Anchors are distributed across the nodes by a
modulo operation on a hash of the surrogate identifier, such that no
duplication exists.

Attribute, table holding named property values for an ensemble,
that cannot be described as ensembles in their own right. An attribute
table holds the surrogate identifier of the instance and the property
value, with an optional history of changes to those values. Attributes
share the same distribution scheme as anchors, which keeps an
instance of an ensemble with its history together on the same node.

Tie, table holding a relationship between ensembles, distinguished
by the roles those ensembles play. Tie tables have one column for each
involved role, holding a reference to a surrogate identifier. Ties are
distributed across the nodes for each role, duplicating subsets of the tie
such that all relationships that an instance takes part in can be resolved
without the involvement of other nodes.

Knot, table holding a set of enumerated values. If the possible
values of an attribute fall within a, usually small, finite set of values, or
a tie represents a relationship which has or may change categories,
such values are best represented through knots. Knots hold surrogate
identifiers for every value and the value itself, where values should be
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unique, mutually exclusive and exhaustive. Knots are fully duplicated
on every node.

Attributes and ties may be static or historized depending on if they
keep a record of changes over time. Historized tables contain an
additional column indicating since when a value or relationship is in
effect. Attributes and ties may also be knotted in which case they
contain a reference to a value in a knot table, rather than an actual
value. All tables may also contain technical columns, such as a
reference to custom metadata.

2.2. Theoretical pros and cons of highly normalized data model for
Big Data

Here is a list of points for and against choosing a high level of
normalization for Big Data. Points for are unconditional. Points against
can be interpreted as open issues, which must be solved to make highly
normalized big data real. Those issues can be solved within chosen
database management system, ETL engine or BI tool. Otherwise, hand-
made applications must be implemented.

1. (+) Pros. Ease of expansion. An important effect of Anchor
modeling is the ease with which new attributes, ties, and anchors can
be added to the model, only resulting in new tables. The creation of
such are close to instantaneous and populating them with data
causes no locks for existing operations and ETL processes.
Applications remain unaffected, since the existing schema is non-
destructively extended [8], and can be dealt with to incorporate new
features when time permits. This classical benefit of anchor model-
ing and a highly normalized data model is important for supporting
an increasing variety of data (3-rd V).

2. (+) Pros. Data compression.When data is sparse, arising though
the addition of new attributes or when an attribute does not apply to
all instances, normalization provides another benefit. Only actual
values are stored and “nulls” are represented by the absence of rows.
For example, when less than half of the cookies have a known user,
as in Fig. 1, the attribute contains fewer rows. Furthermore, when
the number of distinct values is relatively low compared to the total
number of values, knotted attributes can be used.

3. (+) Pros. No update. Database Management systems, suitable for
big data, such as hadoop or column based MPP databases, are
unsuitable for update/delete operations (it is the price for scalabil-
ity). Historized attributes and ties of Anchor modeling use only one
date (From Date) for slow-changing dimension type 2 historicity,
instead of pair of dates (From Date+To Date). If pair of dates is used,
than closing date (To Date) have to be updated when a new value of
attribute/tie arrives. Single date approach requires only inserts,
which are better suited for big data environment.

4. (−) Cons. Time series merge joins required. This con is
caused by same reason, as previous pros - single date historicity.
Assume, that name of a user is stored inside a historized attribute
table. It has columns UserId, Name, ActualDate. The process of
loading new data can be partially represented as merging of tables T
and Tnew with same columns. Row from Tnew can be inserted into

T only if there is no same UserID value in T (first attribute value for a
new user), or Name value from T, which has same UserID as row
from Tnew and a maximum ActualDate, lesser than ActualDate from
Tnew (see example on Fig. 2).

The algorithm, described above, can be implemented as a nested
query, or a nested-loop query execution plan with a quadratic
complexity.

If T contains billion and Tnew contains millions of rows, such
operation can be very time consuming. In contrast, time series
merge join can have linear complexity for this task. Assume that
rows of T and Tnew are sorted by UserID (first) and ActualDate
(second). Than both tables can be loaded, row by row, and stitched
together using two simple conditions: T UserId T UserId. = .new ,
T ActualDate T ActualDate. < .new . While conditions are true, algo-
rithm must take next rows from T, storing last value of T Name. as
Namelast. If conditions are wrong, value Namelast has to be
compared with T Name.new . If values are not equal, row from Tnew
has to be inserted into T, otherwise row from Tnew has to be
ignored. After comparison next row from Tnew has to be taken.
Given algorithm illustrates possibility of linear complexity for time
series merge join, as well as parallelization (parts of T and Tnew for
different users can be merged in parallel). Therefore, efficient use of
anchor modeling for big data is possible, if given (or more efficient)
algorithm is supported by chosen DBMS or implemented manually.
HP Vertica supports efficient time series join as part of SQL syntax.

5. (+) Pros. Uniform rules for data distribution. Big data
environments are usually based on utilization of multiple processing
units (servers), therefore data model have to be somehow distributed
across servers. The section about Anchor Modeling contains uniform
rules of data distribution, that significantly ease expanding of data
model.

6. (−) Cons. Multiple projection support required. If two tables
are identically distributed across servers, they can be joined locally
(if rows from both tables with identical join keys are always located
on the same server). Otherwise, data redistribution is required,
which is resource-intensive task for big data environment (for
terabytes and petabytes). Tie is a perfect example of a table, which
can require two different types of data distribution. It contains two
keys, and can be joined with another table using either first one, or
second one. If Tie table is distributed across servers according to first
key, then first key join will be processed locally, while second key
join will be processed via redistribution, and vice versa. Optimal
performance for both joins can be achieved, if chosen DBMS
supports storing of multiple copies of table data with different
distribution. In case of Tie T(UserId, CookieId), it can be stored as
two tables Tuserid and Tcookieid, with identical columns and rows,
but different distribution. Therefore, if join on UserId is required,
table Tuserid have to be used, otherwise - Tcookieid. Such duplicate

Fig. 1. Expanding a less normalized model (left side) and a corresponding Anchor model (right side).
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tables are called “projections”, and they are critical for efficient
analysis of big data in an Anchor model.

7. (+) Pros. Big number of comparable normalized tables are
easier to maintain, than few enormous denormalized
tables The usage of multiple narrow highly normalized tables gives
additional benefits in terms of maintenance. If table is big (tens-
hundreds of bln. of rows, Tb>1 ), its repartitioning, resegmentation
(change of logic of data distribution among servers of clusters) or
adding indexes will require a lot of time and system resources,
slowing processes, related to any given table. While listed main-
tenance operations are in process, affected tables significantly
decrease performance of related processes. Multiple highly normal-
ized tables can be processed one-by-one, in hours of low system load,
while maintenance of big denormalized table can take days of partial
inoperability of the data warehouse.

8. (−) Cons. Efficient merge joins required. High normalization
assumes usage of many tables, which have to be joined together for
analysis. Big data tasks assumes that the total size of joined tables
can be enormous, too big for available RAM, therefore making hash-
join approaches inefficient.

9. (−) Cons. Efficient query execution plans for ad-hoc analy-
tical queries. Even efficient merge join implementation inside a
DBMS can not guarantee optimal query execution plans for ad-hoc
queries, which, in case of anchor modeling methodology, can take
data from dozens of tables, joined together. Given issue is the most
complex one, it is observed in a separate section below.

2.3. The evolution of the Avito Data Warehouse, numerical results

The first version of the Data Warehouse (DW) at Avito was built in
2013 using Anchor modeling, contained 10TB of data, and ran on an
HP Vertica cluster of 3 nodes. It loaded data from two data sources; the
back office system at Avito and clickstream web logs. Since then, the
DW has grown, and the current size of the Avito data warehouse has
been limited to 51Tb for licensing reasons. It now contains years of
consistent historical data from 14 data sources (back office, Google
DFP/AdSense, MDM system, CRM system, RTB systems, among
others), and a rolling half year of detailed clickstream data. The cluster
has been increased from 3 to 14 nodes in order to scale up
performance.

Clickstream data are loaded every 15 min. At the beginning of 2014
each such batch contained 5 million rows (≈1.5 GB) and 15 million
(≈5 Gb) one year later. Avito has evolved its data model over the years.
The clickstream records originally had less than 30 attributes and now
contains more than 70. Clickstream data has grown many times, both
in terms of velocity (number of rows per minute), volume (size), and
variety (number of attributes). The growth was successfully handled
through scaling up the cluster by the addition of nodes.

ETL processes are implemented using Python. Data sources are
loaded using different approaches: clickstream is loaded using FluentD
with MongoDB as intermediate cash, back office data are loaded using
intermediate CSV files, and data from Google DFP and CRM system are
loaded through web services. There are two distinctive modes of ETL
processes:

• Increment from operational database. Characterized by a small
number of rows from a large number of source tables and source
columns, with most ties and attributes historized. All anchors are
loaded in parallel in 5 min, all ties and attributes are loaded in
parallel in 11 min.

• Increment from clickstream. Characterized by a large number of
rows from a small number of source tables and source columns, with
most ties and attributes static. All anchors are loaded in parallel in
4 min, all ties and attributes are loaded in parallel in 6 min.

Three years of Avito Data Warehouse evolution provided us with
numerical proofs of Anchor Modeling benefits:

1. Ease of expanding. Data model can evolve and grow by adding
new Anchors, Ties and Attributes. Fig Fig 3 demonstrates constant
growth of data model over three years.

2. Data compression. Click stream data of Avito demonstrated best
benefits of data compression. Rather than repeating the relatively few
long strings representing referers (URLs) for each row of click stream,
these are stored as unique values of a knot. The knotted attribute instead
contains identifier references, much smaller than the strings they
represent. Big data tasks often require complex analysis of semi-
structured data, such as strings (URL, UserAgent, Cookie attributes),
via regular expressions. Usage of knotted attributes gives analysts
possibility to analyze only unique values (tens of millions values) instead

Fig. 2. Merging of new values into highly normalized historized attribute table. First value from Tnew has to be added, while second one - not, because last preceding record from T for
same user stores same value.

Fig. 3. Cumulative numbers of Anchors, Ties and Attributes in Avito data warehouse over three years.

N. Golov, L. Rönnbäck Computer Standards & Interfaces 54 (2017) 86–93

89



of analyzing all rows of click stream (tens-hundreds of billions). A query
with a condition on the referer, such as containing a particular substring
(UTM mark detection), can then be computed much more efficiently.
The licensing cost of Vertica depends on “raw data size”, the size of
comma-separated lists of values in tables. In the less normalized model,
referer strings are repeated 80 billion times, but only 1 million times in
the Anchor model. By using Anchor modeling, Avito were able to store
substantially more data without affecting its licensing cost. Compression

rate can be estimated as
N KeySize N ValueSize

N ValueSize

(2 * * + * )
*

rows uniqValues

rows
. Table 1

contains compression rates for some real types of click stream data.
3. No update. 1108 of 1368 attributes and 267 of 581 ties (see Fig. 3)

are historized and loaded at least once per day. Total number of
rows, inserted inside historized tables daily, varies from 50 millions
to 300 millions.

4. Efficient time series merge joins required. All attribute and tie
tables of a model are filled using efficient time series merge join
algorithm of HP Vertica. Candidate row for historized tie/attribute is
loaded only if value is new, or changed in comparison with previous
one. Candidate row for unhistorized tie/ attribute is loaded only if
attribute/tie value is new. Otherwise candidate row is ignored Fig. 4
shows, that ETL processes of Avito load up to 50 billion candidate
rows a day, inserting up to 20 billion of new rows after time series
merge join checks. Up to 50% of candidate rows are discarded.
Efficiency of time series merge join checks gives etl engineers an
ability to easily reload batches of data - previously loaded values will
be automatically ignored, while new values will be inserted.

5. Uniform rules of data distribution guarantees, that the process
of adding new entities inside a data model is swift. This process in
Avito is almost fully automated and supported by a single engineer.
Fig. 3 shows, that up to 264 new tables (and correspondent ETL
processes) can be added within a month, without affecting perfor-
mance of a cluster or ETL processes of previously added tables.
Process of adding a new tables must be not only swift, but it also
must produce a scalable load. Clustered database [4] is theoretically
able to scale load by adding more servers into cluster, but it works
only if data tables are properly designed, with proper algorithm of
distribution between servers of the cluster. Adding few inefficiently
distributed/undistributed big data tables can produce unscalable
load. Fig. 5 demonstrates, that tables, created to anchor modeling
methodology, with uniform rules of data distribution, produce
scalable etl load.

6. Multiple projection support helps Avito to facilitate results from

a preceding paragraph, in cases of adding a new ties.
7. Ease of maintenance of big number of normalized tables.

Anchor modeling guarantees, that schema of data table will never
change. Attribute and tie will always contain 2 business fields (3 for
historized ones), anchor - 1 business field. Therefore, any part of
data model can be unloaded inside convenient storage formats (CSV,
ORC, Apache Parquet) and loaded back. Risk of schema change,
which will prohibit/complicate loading of old data, is minimal. Avito
uses this feature of Anchor Modeling to implement custom archive/
backup tools, to transfer data between multiple Vertica/Hadoop/
ClickHouse cluster. Old data, unloaded from Vertica cluster in 2013
for licensing reasons, were successfully loaded back in 2016 without
any issues.

8. Efficient merge joins – essential for data marts. Although
anchor modeling is extremely efficient for data warehousing tasks, it
is not so convenient for reporting tasks, for OLAP tools. Avito team
implemented data mart layer of denormalized tables for analysts and
reporting tools. The main idea is based on Bill Inmon approach [11]:
all detailed data have to be stored inside highly normalized data
model (Anchor model - equivalent of “integrated repository of
atomic data” of Inmon), while data aggregates, augmented with
some business logic, can be materialized as a denormalized data
marts (dimensional model). Ideally, all data marts must support full
purging and repopulating from detailed data of Anchor modeling.
Data model of Anchor modeling frightens analysts, because it
requires a lot of joins of historized tables. Denormalization of anchor
model parts inside a single data marts hides those complexities and
simplify further analysis. In Avito, process of expanding data model
(Anchor modeling part) is constantly supported by expanding set of
data marts. New data marts are mostly created by business users and
analysts. Avito's ratio of detailed data size/data mart data size is
approximately 9 to 1 (not all data needed regularly, most data marts
show only latest value of all attributes (thereby, compressing
historized tables), some data marts show only aggregated figures,
not detailed ones). Fig. 6 shows evolution of data mart area of Avito.
Number of data marts doubled in one year. Number of rows,
produced in one daily data marts recalculation, has tripled in one
year. Regardless of growth, daily process of data mart recalculation
takes up to 4 hours and is performed at night time.

9. Efficient query execution plans for ad-hoc analytical
queries Previous article about Avito and Anchor Modeling [1]
contained brief description of efficient semi-automatic query execu-
tion plans, used to significantly improve performance of ad-hoc
analytical queries, ran over highly normalized data model. High level
of normalization leads to big number of joins in such queries. Query
plan optimization is mostly based on intellectual preliminary filter-
ing of data, on avoiding of reading from disc and loading into main
memory those rows, which will be eventually rejected because of join
conditions. Creators of HP Vertica implemented first iterations of
this approach (called SIP filters – Side Information Passing filters)
[12]. Nowadays it has significantly evolved, reducing necessity to
manually optimize plan of a new query to once or twice per month

Table 1
Data compression rates for click stream data.

71 billion click stream events, key size=8B

Attribute Unique values Value size Compression

URL address 13 bln. 170 B 0.28
Referer 2.6 bln. 212 B 0.11
User Agent 19 mln. 109 B 0.15

Fig. 4. Dynamics of daily etl – chart of loaded (candidate rows), and chart of inserted rows. Significant part (up to 50 percent of rows) are not loaded because of historicity.
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(see. Fig. 6 with numbers of monthly added data marts). Most
complex data marts require complex join of up to 20 tables of few
billions of rows, which produce ≈850 mln. rows and take up to 50
min to execute.

2.4. Open issues – cluster fragmentation

Modern big data platforms, such as HP Vertica or Hadoop
databases, are able to somehow scale, however, this scalability is not
unbounded, because they still have some “singe point of failure”,
unscalable part of functionality. Usually this unscalable part includes
metadata storage and global data catalog. Although HP Vertica can
process hundreds of queries in parallel, using multiple nodes of a
cluster, each DDL query must get an exclusive lock on a single global
data catalog, once or multiple times. Global catalog can reside on
dedicated nodes (case of Hadoop), or can be reproduced on all the
nodes (case of Vertica), it must be accessed only sequentially to avoid
data corruption.

Fig. 3 shows number of data tables, processed by the system. Each
table of Anchor data model require dedicated ETL process. All those
processes can be launched in parallel (one parallel batch for all
Anchors, second – for all Attributes and Ties). Current version of HP
Vertica can process hundreds of parallel ETL processes (SQL insert-
select queries), up to ≈500. Further growth of parallelism is blocked by
competition for unscalable resources (global data catalog is best, but
not only example). Moreover, it is impractical to use all resources of
database cluster for ETL tasks – some part of cluster resources must be
available for analytic tasks, reporting and ad-hoc queries. Highly
normalized approach prohibits to extend data model by adding
columns to existing tables. Model can be extended only by adding
new tables, which in turn require adding new ETL processes, which will
increase competition for unscalable resources.

Competition for unscalable resources of database cluster can be

solved by increasing performance of this resources (task for vendor), or
by cluster fragmentation: the division of single cluster into several
pieces, with separate instance of unscalable resource for each piece.
Cluster fragmentation can help with ETL processes, but it can spoil
data integrity (data warehouse must be holistic, this feature is critical
for business users [11] ). Avito experiments showed, that Anchor model
can be safely separated into few pieces for scalability of ETL processes,
at the same time preserving integrity of all data for analytic queries.

Anchor data model looks like a graph, where Anchors are connected
by Ties and surrounded by Attributes. Each Anchor, Attribute or Tie
can be loaded from one or multiple data sources. Theoretically, there
can be isolated parts of the graph, but the main benefit of data
warehouse is based on its integrity – existence of connections between
parts of data model, loaded from various sources. To enable ETL
cluster fragmentation one must separate graph into sub-graphs,
independently load tables data to tables of sub-graphs and solve
collisions over tables, which form connections between sub-graphs.
Here is a list of cases about separation of a single data-graph into two
sub-graphs to enable independent loading (resulting sub-graphs can be
further separated until required scale is reached). It is also important to
create sub-graphs, which correspond to some business areas/source
systems, making it possible to load separate business areas indepen-
dently, choosing load rate according to business need of each area.

1. Simplest case – data graph can be separated into two sub-graphs
without any paths (Ties) between. Two separate clusters can be used
without any additional efforts, without competing for unscalable
resources between them. See Fig. 7. Both cluster load all Anchors in
parallel, then all Ties and Attributes in parallel, using local Anchors.
This case perfectly fits to data model, being loaded from two
completely unconnected data sources.

2. Two sub-graphs with common set of Anchors. Can be loaded using
two clusters, if each common Anchor is stored inside separate fast

Fig. 5. Chart demonstrates that uniform rules of data distribution produce scalable load, therefore Avito can supports adding new data tables (and correspondent ETL procedures) by
adding new nodes into cluster.

Fig. 6. Evolution of data marts of Avito data warehouse. From 79 data marts and 3 bln. rows of daily increment at the end of 2015 to 161 data marts and 9 bln. rows of daily increment
at the end of 2016.
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storage, external to both clusters, see Fig. 8. This fast store can be
implemented using in-memory key-value databases, such as Redis.
Both clusters can load all Anchors in parallel (local Anchors – to
tables, common Anchors – to fast storage, to avoid loading
duplicates). Afterwards, both clusters load all Ties and Attributes
in parallel, using local and global Anchors. For example, such a
graph can correspond to a data model with two source systems –

clickstream and operational database. Two common Anchors are
Users and Payments, while each system provides local information
about those Anchors: detailed attributes of users and payments from
operational database and clicks of users from clickstream.

3. Most complex case – two sub-graphs with common set of Anchors,
Attributes and/or Ties. Can this case be completely avoided? It is
technically possible to move all common Attributes and Ties into one
sub-graph and reduce the problem to the previous. This solution can
contradict with requirement to have correspondence between sub-
graphs and business areas. As with the example from previous
section, we can assume that Login (Attribute) of an User (Anchor)
and Link between User and Payment can be loaded from both
source-systems, clickstream and operational database. Login and
Link between User and Payment can be moved to a single sub-graph
(for example to sub-graph, correspondent to operational database),
therefore those data from clickstream must be ignored. Also it is
technically possible to duplicate Attributes and Ties, to create, for
example, Attribute OperationalDatabaseLogin, local to operational
database, and ClickStreamLogin, local to clickstream. This solution
can cause misunderstanding for business users and analysts. Both
solutions have drawbacks. There is a third solution – create a copy of
common Attributes and Ties inside each sub-graph, and load them
independently. See Fig. 9. This solution looks dangerous for
integrity, but further section contains simple limitations, which
can make the solution safe.

List of cases above describe all possible issues with a data model
graph. Case three, in a worst possible case, can contain all objects of a
graph. Experiments of Avito showed, that case 3 is rather rare. In most

cases sub-graphs, corresponding to business areas/source systems, can
be separated according to case 1 or 2. Nevertheless, all three cases
assume data graph segmentation, although ad-hoc analysis requires
combining sub-graphs back into single graph.

Sub-graph combination from separate loading clusters is possible
because of “only-insert” nature of loading data into Anchor model. All
new data of Anchors, Attributes and Ties are added as new data pages,
without affecting old pages. Direct loading of data pages is significantly
faster, than performing complete ETL processes, than insert-select
queries. Same process (direct loading of data pages) is used for backup/
restore operations. Fig. 10 shows, that “local” tables (B, C) get new data
pages from a single source, therefore, no risk for data integrity.
Moreover, this is true not only for tables from case 1, not only for
Attributes and Ties from case 2, but also for common Anchors from
case 2 and 3, because each such Anchor is really loaded from a single
source – correspondent fast in-memory key-value store.

Therefore, multi-source increment is possible only for common
Attributes and Ties from case 3. According to case 3, table with initial
data must be copied to both sub-graphs - L and R. Afterwards, both
copies have to process loading of new data and be combined back for
ad-hoc analysis. Lets analyze case of Attribute, Login of a User -
u l d( , , ), where u - id of a User, l - login of a user, and d - start datetime
of a login of a user (single date historicity, can be NULL for
unhistorized attribute). At the initial moment, Attribute table contains
row u l d, , )0 0 0 . If new value of an attribute for user u0 arrive to a single
sub-graphs - L or R, than situation for u0 is identical to cases 1 or 2 -
single source of new data. Data integrity risk exists only if new row
arrives to each sub-graph - u l d, , )L L0 and u l d, , )R R0 . Here is list of
possible cases:

• l l d d= , =L L0 0 or l l d d= , =R R0 0 - row u l d, , )L L0 or u l d, , )R R0 will not
be loaded, so this case is identical to arriving of new value to single
sub-graph, no possible conflict.

• l l d d l l d d< > , > , < > , >L L R R0 0 0 0 - both rows, u l d, , )L L0 and
u l d, , )R R0 will be loaded to sub-graphs and, finally, to a single graph.
This case can lead to minor issue - it is possible that lL=lR, therefore

Fig. 7. Fully separable graph. Easy to load using two clusters. Anchors - squares, Ties - diamonds, Attribute - circles.

Fig. 8. Graph, separable into two sub-graphs with a common set of Anchors (filled black squares).

Fig. 9. Unseparable graphs, with significant common subgraph (filled black objects).

N. Golov, L. Rönnbäck Computer Standards & Interfaces 54 (2017) 86–93

92



two consequent rows for single attribute of a user will be loaded.
This case can confuse inexperienced analyst, but it did not spoil data
integrity.

• l l d d l l d d d d= , > , < > , > , >L L R R L R0 0 0 0 - this case is the most
dangerous one. Trivial algorithm of loading historized attributes
will discard row u l d( , , )L L0 , only row u l d( , , )R R0 will be loaded, do the
history of user u0 will contain only those consequent logins - l l, R0 ,
although correct history must contain those logins: l l l, ,R L0 , or
l l l, ,R0 0 (login changed once, then changed back to initial value).
Therefore, algorithm of loading historized attributes has to be
modified to load row u l d, , )L L0 in case of l l d d= , >L L0 0. This
algorithm can load sequential duplicate values of an attribute.

3. Conclusions

Three years of using highly normalized data lake-like data ware-
house in Avito proved the viability of this approach. Constant extension
of Avito data warehouse demonstrated, what tasks and volumes can be
processed by such a combination of data platform and data modeling
approach. However, this extension showed possible limitations, im-
posed by using a single MPP cluster (unscalable resources, competition
for global data catalog). Cluster fragmentation techniques can theore-
tically overcome those limitations, which will be tested in further
researches.
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