
Thrift: Scalable Cross-Language Services Implementation

Mark Slee, Aditya Agarwal and Marc Kwiatkowski
Facebook, 156 University Ave, Palo Alto, CA

{mcslee,aditya,marc}@facebook.com

Abstract
Thrift is a software library and set of code-generation tools devel-
oped at Facebook to expedite development and implementation of
efficient and scalable backend services. Its primary goal is to en-
able efficient and reliable communication across programming lan-
guages by abstracting the portions of each language that tend to
require the most customization into a common library that is imple-
mented in each language. Specifically, Thrift allows developers to
define datatypes and service interfaces in a single language-neutral
file and generate all the necessary code to build RPC clients and
servers.

This paper details the motivations and design choices we made
in Thrift, as well as some of the more interesting implementation
details. It is not intended to be taken as research, but rather it is an
exposition on what we did and why.

1. Introduction
As Facebook’s traffic and network structure have scaled, the re-
source demands of many operations on the site (i.e. search, ad se-
lection and delivery, event logging) have presented technical re-
quirements drastically outside the scope of the LAMP framework.
In our implementation of these services, various programming lan-
guages have been selected to optimize for the right combination of
performance, ease and speed of development, availability of exist-
ing libraries, etc. By and large, Facebook’s engineering culture has
tended towards choosing the best tools and implementations avail-
able over standardizing on any one programming language and be-
grudgingly accepting its inherent limitations.

Given this design choice, we were presented with the challenge
of building a transparent, high-performance bridge across many
programming languages. We found that most available solutions
were either too limited, did not offer sufficient datatype freedom,
or suffered from subpar performance. 1

The solution that we have implemented combines a language-
neutral software stack implemented across numerous programming
languages and an associated code generation engine that trans-
forms a simple interface and data definition language into client
and server remote procedure call libraries. Choosing static code
generation over a dynamic system allows us to create validated
code that can be run without the need for any advanced introspec-
tive run-time type checking. It is also designed to be as simple as
possible for the developer, who can typically define all the neces-
sary data structures and interfaces for a complex service in a single
short file.

Surprised that a robust open solution to these relatively common
problems did not yet exist, we committed early on to making the
Thrift implementation open source.

1 See Appendix A for a discussion of alternative systems.

In evaluating the challenges of cross-language interaction in a net-
worked environment, some key components were identified:

Types. A common type system must exist across programming lan-
guages without requiring that the application developer use custom
Thrift datatypes or write their own serialization code. That is, a C++
programmer should be able to transparently exchange a strongly
typed STL map for a dynamic Python dictionary. Neither program-
mer should be forced to write any code below the application layer
to achieve this. Section 2 details the Thrift type system.

Transport. Each language must have a common interface to bidirec-
tional raw data transport. The specifics of how a given transport is
implemented should not matter to the service developer. The same
application code should be able to run against TCP stream sockets,
raw data in memory, or files on disk. Section 3 details the Thrift
Transport layer.

Protocol. Datatypes must have some way of using the Transport
layer to encode and decode themselves. Again, the application
developer need not be concerned by this layer. Whether the service
uses an XML or binary protocol is immaterial to the application
code. All that matters is that the data can be read and written
in a consistent, deterministic matter. Section 4 details the Thrift
Protocol layer.

Versioning. For robust services, the involved datatypes must pro-
vide a mechanism for versioning themselves. Specifically, it should
be possible to add or remove fields in an object or alter the argu-
ment list of a function without any interruption in service (or, worse
yet, nasty segmentation faults). Section 5 details Thrift’s versioning
system.

Processors. Finally, we generate code capable of processing data
streams to accomplish remote procedure calls. Section 6 details the
generated code and TProcessor paradigm.

Section 7 discusses implementation details, and Section 8 describes
our conclusions.

2. Types
The goal of the Thrift type system is to enable programmers to
develop using completely natively defined types, no matter what
programming language they use. By design, the Thrift type system
does not introduce any special dynamic types or wrapper objects.
It also does not require that the developer write any code for object
serialization or transport. The Thrift IDL (Interface Definition Lan-
guage) file is logically a way for developers to annotate their data
structures with the minimal amount of extra information necessary
to tell a code generator how to safely transport the objects across
languages.

2.1 Base Types

The type system rests upon a few base types. In considering which
types to support, we aimed for clarity and simplicity over abun-



dance, focusing on the key types available in all programming lan-
guages, ommitting any niche types available only in specific lan-
guages.

The base types supported by Thrift are:

• bool A boolean value, true or false

• byte A signed byte

• i16 A 16-bit signed integer

• i32 A 32-bit signed integer

• i64 A 64-bit signed integer

• double A 64-bit floating point number

• string An encoding-agnostic text or binary string

Of particular note is the absence of unsigned integer types. Because
these types have no direct translation to native primitive types
in many languages, the advantages they afford are lost. Further,
there is no way to prevent the application developer in a language
like Python from assigning a negative value to an integer variable,
leading to unpredictable behavior. From a design standpoint, we
observed that unsigned integers were very rarely, if ever, used for
arithmetic purposes, but in practice were much more often used
as keys or identifiers. In this case, the sign is irrelevant. Signed
integers serve this same purpose and can be safely cast to their
unsigned counterparts (most commonly in C++) when absolutely
necessary.

2.2 Structs

A Thrift struct defines a common object to be used across lan-
guages. A struct is essentially equivalent to a class in object ori-
ented programming languages. A struct has a set of strongly typed
fields, each with a unique name identifier. The basic syntax for
defining a Thrift struct looks very similar to a C struct definition.
Fields may be annotated with an integer field identifier (unique to
the scope of that struct) and optional default values. Field identifiers
will be automatically assigned if omitted, though they are strongly
encouraged for versioning reasons discussed later.

2.3 Containers

Thrift containers are strongly typed containers that map to the most
commonly used containers in common programming languages.
They are annotated using the C++ template (or Java Generics) style.
There are three types available:

• list<type> An ordered list of elements. Translates directly
into an STL vector, Java ArrayList, or native array in script-
ing languages. May contain duplicates.

• set<type> An unordered set of unique elements. Translates
into an STL set, Java HashSet, set in Python, or native
dictionary in PHP/Ruby.

• map<type1,type2> A map of strictly unique keys to values
Translates into an STL map, Java HashMap, PHP associative
array, or Python/Ruby dictionary.

While defaults are provided, the type mappings are not explic-
itly fixed. Custom code generator directives have been added to
substitute custom types in destination languages (i.e. hash map or
Google’s sparse hash map can be used in C++). The only require-
ment is that the custom types support all the necessary iteration
primitives. Container elements may be of any valid Thrift type, in-
cluding other containers or structs.

struct Example {
1:i32 number=10,
2:i64 bigNumber,

3:double decimals,
4:string name="thrifty"

}

In the target language, each definition generates a type with two
methods, read and write, which perform serialization and trans-
port of the objects using a Thrift TProtocol object.

2.4 Exceptions

Exceptions are syntactically and functionally equivalent to structs
except that they are declared using the exception keyword instead
of the struct keyword.

The generated objects inherit from an exception base class as ap-
propriate in each target programming language, in order to seam-
lessly integrate with native exception handling in any given lan-
guage. Again, the design emphasis is on making the code familiar
to the application developer.

2.5 Services

Services are defined using Thrift types. Definition of a service is
semantically equivalent to defining an interface (or a pure virtual
abstract class) in object oriented programming. The Thrift compiler
generates fully functional client and server stubs that implement the
interface. Services are defined as follows:

service <name> {
<returntype> <name>(<arguments>)

[throws (<exceptions>)]
...

}

An example:

service StringCache {
void set(1:i32 key, 2:string value),
string get(1:i32 key) throws (1:KeyNotFound knf),
void delete(1:i32 key)

}

Note that void is a valid type for a function return, in addition
to all other defined Thrift types. Additionally, an async modifier
keyword may be added to a void function, which will generate
code that does not wait for a response from the server. Note that a
pure void function will return a response to the client which guar-
antees that the operation has completed on the server side. With
async method calls the client will only be guaranteed that the re-
quest succeeded at the transport layer. (In many transport scenarios
this is inherently unreliable due to the Byzantine Generals’ Prob-
lem. Therefore, application developers should take care only to use
the async optimization in cases where dropped method calls are
acceptable or the transport is known to be reliable.)

Also of note is the fact that argument lists and exception lists for
functions are implemented as Thrift structs. All three constructs are
identical in both notation and behavior.

3. Transport
The transport layer is used by the generated code to facilitate data
transfer.

3.1 Interface

A key design choice in the implementation of Thrift was to de-
couple the transport layer from the code generation layer. Though
Thrift is typically used on top of the TCP/IP stack with streaming



sockets as the base layer of communication, there was no com-
pelling reason to build that constraint into the system. The perfor-
mance tradeoff incurred by an abstracted I/O layer (roughly one
virtual method lookup / function call per operation) was immate-
rial compared to the cost of actual I/O operations (typically invok-
ing system calls).

Fundamentally, generated Thrift code only needs to know how to
read and write data. The origin and destination of the data are
irrelevant; it may be a socket, a segment of shared memory, or a
file on the local disk. The Thrift transport interface supports the
following methods:

• open Opens the tranpsort

• close Closes the tranport

• isOpen Indicates whether the transport is open

• read Reads from the transport

• write Writes to the transport

• flush Forces any pending writes

There are a few additional methods not documented here which are
used to aid in batching reads and optionally signaling the comple-
tion of a read or write operation from the generated code.

In addition to the above TTransport interface, there is a
TServerTransport interface used to accept or create primitive
transport objects. Its interface is as follows:

• open Opens the transport

• listen Begins listening for connections

• accept Returns a new client transport

• close Closes the transport

3.2 Implementation

The transport interface is designed for simple implementation in
any programming language. New transport mechanisms can be
easily defined as needed by application developers.

3.2.1 TSocket

The TSocket class is implemented across all target languages. It
provides a common, simple interface to a TCP/IP stream socket.

3.2.2 TFileTransport

The TFileTransport is an abstraction of an on-disk file to a data
stream. It can be used to write out a set of incoming Thrift requests
to a file on disk. The on-disk data can then be replayed from the log,
either for post-processing or for reproduction and/or simulation of
past events.

3.2.3 Utilities

The Transport interface is designed to support easy extension us-
ing common OOP techniques, such as composition. Some sim-
ple utilites include the TBufferedTransport, which buffers the
writes and reads on an underlying transport, the TFramedTransport,
which transmits data with frame size headers for chunking op-
timization or nonblocking operation, and the TMemoryBuffer,
which allows reading and writing directly from the heap or stack
memory owned by the process.

4. Protocol
A second major abstraction in Thrift is the separation of data
structure from transport representation. Thrift enforces a certain

messaging structure when transporting data, but it is agnostic to
the protocol encoding in use. That is, it does not matter whether
data is encoded as XML, human-readable ASCII, or a dense binary
format as long as the data supports a fixed set of operations that
allow it to be deterministically read and written by generated code.

4.1 Interface

The Thrift Protocol interface is very straightforward. It fundamen-
tally supports two things: 1) bidirectional sequenced messaging,
and 2) encoding of base types, containers, and structs.

writeMessageBegin(name, type, seq)
writeMessageEnd()
writeStructBegin(name)
writeStructEnd()
writeFieldBegin(name, type, id)
writeFieldEnd()
writeFieldStop()
writeMapBegin(ktype, vtype, size)
writeMapEnd()
writeListBegin(etype, size)
writeListEnd()
writeSetBegin(etype, size)
writeSetEnd()
writeBool(bool)
writeByte(byte)
writeI16(i16)
writeI32(i32)
writeI64(i64)
writeDouble(double)
writeString(string)

name, type, seq = readMessageBegin()
readMessageEnd()

name = readStructBegin()
readStructEnd()

name, type, id = readFieldBegin()
readFieldEnd()

k, v, size = readMapBegin()
readMapEnd()

etype, size = readListBegin()
readListEnd()

etype, size = readSetBegin()
readSetEnd()

bool = readBool()
byte = readByte()
i16 = readI16()
i32 = readI32()
i64 = readI64()
double = readDouble()
string = readString()

Note that every write function has exactly one read counter-
part, with the exception of writeFieldStop(). This is a special
method that signals the end of a struct. The procedure for reading a
struct is to readFieldBegin() until the stop field is encountered,
and then to readStructEnd(). The generated code relies upon
this call sequence to ensure that everything written by a protocol
encoder can be read by a matching protocol decoder. Further note
that this set of functions is by design more robust than necessary.
For example, writeStructEnd() is not strictly necessary, as the
end of a struct may be implied by the stop field. This method is a
convenience for verbose protocols in which it is cleaner to separate
these calls (e.g. a closing </struct> tag in XML).



4.2 Structure

Thrift structures are designed to support encoding into a streaming
protocol. The implementation should never need to frame or com-
pute the entire data length of a structure prior to encoding it. This
is critical to performance in many scenarios. Consider a long list
of relatively large strings. If the protocol interface required reading
or writing a list to be an atomic operation, then the implementation
would need to perform a linear pass over the entire list before en-
coding any data. However, if the list can be written as iteration is
performed, the corresponding read may begin in parallel, theoreti-
cally offering an end-to-end speedup of (kN −C), where N is the
size of the list, k the cost factor associated with serializing a sin-
gle element, and C is fixed offset for the delay between data being
written and becoming available to read.

Similarly, structs do not encode their data lengths a priori. Instead,
they are encoded as a sequence of fields, with each field having a
type specifier and a unique field identifier. Note that the inclusion of
type specifiers allows the protocol to be safely parsed and decoded
without any generated code or access to the original IDL file.
Structs are terminated by a field header with a special STOP type.
Because all the basic types can be read deterministically, all structs
(even those containing other structs) can be read deterministically.
The Thrift protocol is self-delimiting without any framing and
regardless of the encoding format.

In situations where streaming is unnecessary or framing is advan-
tageous, it can be very simply added into the transport layer, using
the TFramedTransport abstraction.

4.3 Implementation

Facebook has implemented and deployed a space-efficient binary
protocol which is used by most backend services. Essentially, it
writes all data in a flat binary format. Integer types are converted
to network byte order, strings are prepended with their byte length,
and all message and field headers are written using the primitive
integer serialization constructs. String names for fields are omitted
- when using generated code, field identifiers are sufficient.

We decided against some extreme storage optimizations (i.e. pack-
ing small integers into ASCII or using a 7-bit continuation for-
mat) for the sake of simplicity and clarity in the code. These alter-
ations can easily be made if and when we encounter a performance-
critical use case that demands them.

5. Versioning
Thrift is robust in the face of versioning and data definition
changes. This is critical to enable staged rollouts of changes to
deployed services. The system must be able to support reading of
old data from log files, as well as requests from out-of-date clients
to new servers, and vice versa.

5.1 Field Identifiers

Versioning in Thrift is implemented via field identifiers. The field
header for every member of a struct in Thrift is encoded with
a unique field identifier. The combination of this field identifier
and its type specifier is used to uniquely identify the field. The
Thrift definition language supports automatic assignment of field
identifiers, but it is good programming practice to always explicitly
specify field identifiers. Identifiers are specified as follows:

struct Example {
1:i32 number=10,
2:i64 bigNumber,
3:double decimals,
4:string name="thrifty"

}

To avoid conflicts between manually and automatically assigned
identifiers, fields with identifiers omitted are assigned identifiers
decrementing from -1, and the language only supports the manual
assignment of positive identifiers.

When data is being deserialized, the generated code can use these
identifiers to properly identify the field and determine whether it
aligns with a field in its definition file. If a field identifier is not
recognized, the generated code can use the type specifier to skip
the unknown field without any error. Again, this is possible due to
the fact that all datatypes are self delimiting.

Field identifiers can (and should) also be specified in function
argument lists. In fact, argument lists are not only represented as
structs on the backend, but actually share the same code in the
compiler frontend. This allows for version-safe modification of
method parameters

service StringCache {
void set(1:i32 key, 2:string value),
string get(1:i32 key) throws (1:KeyNotFound knf),
void delete(1:i32 key)

}

The syntax for specifying field identifiers was chosen to echo their
structure. Structs can be thought of as a dictionary where the iden-
tifiers are keys, and the values are strongly-typed named fields.

Field identifiers internally use the i16 Thrift type. Note, however,
that the TProtocol abstraction may encode identifiers in any for-
mat.

5.2 Isset

When an unexpected field is encountered, it can be safely ignored
and discarded. When an expected field is not found, there must be
some way to signal to the developer that it was not present. This
is implemented via an inner isset structure inside the defined
objects. (Isset functionality is implicit with a null value in PHP,
None in Python and nil in Ruby.) Essentially, the inner isset
object of each Thrift struct contains a boolean value for each field
which denotes whether or not that field is present in the struct.
When a reader receives a struct, it should check for a field being
set before operating directly on it.

class Example {
public:
Example() :

number(10),
bigNumber(0),
decimals(0),
name("thrifty") {}

int32_t number;
int64_t bigNumber;
double decimals;
std::string name;

struct __isset {
__isset() :
number(false),
bigNumber(false),
decimals(false),
name(false) {}

bool number;
bool bigNumber;
bool decimals;



bool name;
} __isset;

...
}

5.3 Case Analysis

There are four cases in which version mismatches may occur.

1. Added field, old client, new server. In this case, the old client
does not send the new field. The new server recognizes that the
field is not set, and implements default behavior for out-of-date
requests.

2. Removed field, old client, new server. In this case, the old client
sends the removed field. The new server simply ignores it.

3. Added field, new client, old server. The new client sends a field
that the old server does not recognize. The old server simply
ignores it and processes as normal.

4. Removed field, new client, old server. This is the most danger-
ous case, as the old server is unlikely to have suitable default
behavior implemented for the missing field. It is recommended
that in this situation the new server be rolled out prior to the
new clients.

5.4 Protocol/Transport Versioning

The TProtocol abstractions are also designed to give protocol
implementations the freedom to version themselves in whatever
manner they see fit. Specifically, any protocol implementation is
free to send whatever it likes in the writeMessageBegin() call.
It is entirely up to the implementor how to handle versioning at the
protocol level. The key point is that protocol encoding changes are
safely isolated from interface definition version changes.

Note that the exact same is true of the TTransport interface. For
example, if we wished to add some new checksumming or error
detection to the TFileTransport, we could simply add a version
header into the data it writes to the file in such a way that it would
still accept old log files without the given header.

6. RPC Implementation
6.1 TProcessor

The last core interface in the Thrift design is the TProcessor,
perhaps the most simple of the constructs. The interface is as
follows:

interface TProcessor {
bool process(TProtocol in, TProtocol out)

throws TException
}

The key design idea here is that the complex systems we build can
fundamentally be broken down into agents or services that operate
on inputs and outputs. In most cases, there is actually just one input
and output (an RPC client) that needs handling.

6.2 Generated Code

When a service is defined, we generate a TProcessor instance
capable of handling RPC requests to that service, using a few
helpers. The fundamental structure (illustrated in pseudo-C++) is
as follows:

Service.thrift
=> Service.cpp

interface ServiceIf
class ServiceClient : virtual ServiceIf

TProtocol in
TProtocol out

class ServiceProcessor : TProcessor
ServiceIf handler

ServiceHandler.cpp
class ServiceHandler : virtual ServiceIf

TServer.cpp
TServer(TProcessor processor,

TServerTransport transport,
TTransportFactory tfactory,
TProtocolFactory pfactory)

serve()

From the Thrift definition file, we generate the virtual service in-
terface. A client class is generated, which implements the interface
and uses two TProtocol instances to perform the I/O operations.
The generated processor implements the TProcessor interface.
The generated code has all the logic to handle RPC invocations
via the process() call, and takes as a parameter an instance of the
service interface, as implemented by the application developer.

The user provides an implementation of the application interface in
separate, non-generated source code.

6.3 TServer

Finally, the Thrift core libraries provide a TServer abstraction. The
TServer object generally works as follows.

• Use the TServerTransport to get a TTransport

• Use the TTransportFactory to optionally convert the primi-
tive transport into a suitable application transport (typically the
TBufferedTransportFactory is used here)

• Use the TProtocolFactory to create an input and output
protocol for the TTransport

• Invoke the process() method of the TProcessor object

The layers are appropriately separated such that the server code
needs to know nothing about any of the transports, encodings,
or applications in play. The server encapsulates the logic around
connection handling, threading, etc. while the processor deals with
RPC. The only code written by the application developer lives in
the definitional Thrift file and the interface implementation.

Facebook has deployed multiple TServer implementations, in-
cluding the single-threaded TSimpleServer, thread-per-connection
TThreadedServer, and thread-pooling TThreadPoolServer.

The TProcessor interface is very general by design. There is no
requirement that a TServer take a generated TProcessor object.
Thrift allows the application developer to easily write any type of
server that operates on TProtocol objects (for instance, a server
could simply stream a certain type of object without any actual RPC
method invocation).

7. Implementation Details
7.1 Target Languages

Thrift currently supports five target languages: C++, Java, Python,
Ruby, and PHP. At Facebook, we have deployed servers predom-
inantly in C++, Java, and Python. Thrift services implemented in
PHP have also been embedded into the Apache web server, provid-
ing transparent backend access to many of our frontend constructs
using a THttpClient implementation of the TTransport inter-
face.



Though Thrift was explicitly designed to be much more efficient
and robust than typical web technologies, as we were designing
our XML-based REST web services API we noticed that Thrift
could be easily used to define our service interface. Though we
do not currently employ SOAP envelopes (in the authors’ opinions
there is already far too much repetitive enterprise Java software
to do that sort of thing), we were able to quickly extend Thrift to
generate XML Schema Definition files for our service, as well as
a framework for versioning different implementations of our web
service. Though public web services are admittedly tangential to
Thrift’s core use case and design, Thrift facilitated rapid iteration
and affords us the ability to quickly migrate our entire XML-based
web service onto a higher performance system should the need
arise.

7.2 Generated Structs

We made a conscious decision to make our generated structs as
transparent as possible. All fields are publicly accessible; there are
no set() and get() methods. Similarly, use of the isset object
is not enforced. We do not include any FieldNotSetException
construct. Developers have the option to use these fields to write
more robust code, but the system is robust to the developer ignor-
ing the isset construct entirely and will provide suitable default
behavior in all cases.

This choice was motivated by the desire to ease application devel-
opment. Our stated goal is not to make developers learn a rich new
library in their language of choice, but rather to generate code that
allow them to work with the constructs that are most familiar in
each language.

We also made the read() and write() methods of the generated
objects public so that the objects can be used outside of the con-
text of RPC clients and servers. Thrift is a useful tool simply for
generating objects that are easily serializable across programming
languages.

7.3 RPC Method Identification

Method calls in RPC are implemented by sending the method name
as a string. One issue with this approach is that longer method
names require more bandwidth. We experimented with using fixed-
size hashes to identify methods, but in the end concluded that
the savings were not worth the headaches incurred. Reliably deal-
ing with conflicts across versions of an interface definition file is
impossible without a meta-storage system (i.e. to generate non-
conflicting hashes for the current version of a file, we would have
to know about all conflicts that ever existed in any previous version
of the file).

We wanted to avoid too many unnecessary string comparisons
upon method invocation. To deal with this, we generate maps from
strings to function pointers, so that invocation is effectively accom-
plished via a constant-time hash lookup in the common case. This
requires the use of a couple interesting code constructs. Because
Java does not have function pointers, process functions are all pri-
vate member classes implementing a common interface.

private class ping implements ProcessFunction {
public void process(int seqid,

TProtocol iprot,
TProtocol oprot)

throws TException
{ ...}

}

HashMap<String,ProcessFunction> processMap_ =
new HashMap<String,ProcessFunction>();

In C++, we use a relatively esoteric language construct: member
function pointers.

std::map<std::string,
void (ExampleServiceProcessor::*)(int32_t,
facebook::thrift::protocol::TProtocol*,
facebook::thrift::protocol::TProtocol*)>
processMap_;

Using these techniques, the cost of string processing is minimized,
and we reap the benefit of being able to easily debug corrupt
or misunderstood data by inspecting it for known string method
names.

7.4 Servers and Multithreading

Thrift services require basic multithreading to handle simultane-
ous requests from multiple clients. For the Python and Java im-
plementations of Thrift server logic, the standard threading li-
braries distributed with the languages provide adequate support.
For the C++ implementation, no standard multithread runtime li-
brary exists. Specifically, robust, lightweight, and portable thread
manager and timer class implementations do not exist. We in-
vestigated existing implementations, namely boost::thread,
boost::threadpool, ACE Thread Manager and ACE Timer.

While boost::threads[1] provides clean, lightweight and robust
implementations of multi-thread primitives (mutexes, conditions,
threads) it does not provide a thread manager or timer implementa-
tion.

boost::threadpool[2] also looked promising but was not far
enough along for our purposes. We wanted to limit the dependency
on third-party libraries as much as possible. Because
boost::threadpool is not a pure template library and requires
runtime libraries and because it is not yet part of the official
Boost distribution we felt it was not ready for use in Thrift. As
boost::threadpool evolves and especially if it is added to the
Boost distribution we may reconsider our decision to not use it.

ACE has both a thread manager and timer class in addition to multi-
thread primitives. The biggest problem with ACE is that it is ACE.
Unlike Boost, ACE API quality is poor. Everything in ACE has
large numbers of dependencies on everything else in ACE - thus
forcing developers to throw out standard classes, such as STL col-
lections, in favor of ACE’s homebrewed implementations. In addi-
tion, unlike Boost, ACE implementations demonstrate little under-
standing of the power and pitfalls of C++ programming and take no
advantage of modern templating techniques to ensure compile time
safety and reasonable compiler error messages. For all these rea-
sons, ACE was rejected. Instead, we chose to implement our own
library, described in the following sections.

7.5 Thread Primitives

The Thrift thread libraries are implemented in the namespace
facebook::thrift::concurrency and have three components:

• primitives

• thread pool manager

• timer manager

As mentioned above, we were hesitant to introduce any additional
dependencies on Thrift. We decided to use boost::shared ptr
because it is so useful for multithreaded application, it requires no
link-time or runtime libraries (i.e. it is a pure template library) and
it is due to become part of the C++0x standard.

We implement standard Mutex and Condition classes, and a
Monitor class. The latter is simply a combination of a mutex and



condition variable and is analogous to the Monitor implementa-
tion provided for the Java Object class. This is also sometimes
referred to as a barrier. We provide a Synchronized guard class to
allow Java-like synchronized blocks. This is just a bit of syntactic
sugar, but, like its Java counterpart, clearly delimits critical sec-
tions of code. Unlike its Java counterpart, we still have the ability
to programmatically lock, unlock, block, and signal monitors.

void run() {
{Synchronized s(manager->monitor);
if (manager->state == TimerManager::STARTING) {

manager->state = TimerManager::STARTED;
manager->monitor.notifyAll();

}
}
}

We again borrowed from Java the distinction between a thread and
a runnable class. A Thread is the actual schedulable object. The
Runnable is the logic to execute within the thread. The Thread
implementation deals with all the platform-specific thread creation
and destruction issues, while the Runnable implementation deals
with the application-specific per-thread logic. The benefit of this
approach is that developers can easily subclass the Runnable class
without pulling in platform-specific super-classes.

7.6 Thread, Runnable, and shared ptr

We use boost::shared ptr throughout the ThreadManager and
TimerManager implementations to guarantee cleanup of dead ob-
jects that can be accessed by multiple threads. For Thread class
implementations, boost::shared ptr usage requires particular
attention to make sure Thread objects are neither leaked nor deref-
erenced prematurely while creating and shutting down threads.

Thread creation requires calling into a C library. (In our case the
POSIX thread library, libpthread, but the same would be true
for WIN32 threads). Typically, the OS makes few, if any, guaran-
tees about when ThreadMain, a C thread’s entry-point function,
will be called. Therefore, it is possible that our thread create call,
ThreadFactory::newThread() could return to the caller well
before that time. To ensure that the returned Thread object is not
prematurely cleaned up if the caller gives up its reference prior to
the ThreadMain call, the Thread object makes a weak referenence
to itself in its start method.

With the weak reference in hand the ThreadMain function can at-
tempt to get a strong reference before entering the Runnable::run
method of the Runnable object bound to the Thread. If no strong
references to the thread are obtained between exiting Thread::start
and entering ThreadMain, the weak reference returns null and the
function exits immediately.

The need for the Thread to make a weak reference to itself
has a significant impact on the API. Since references are man-
aged through the boost::shared ptr templates, the Thread
object must have a reference to itself wrapped by the same
boost::shared ptr envelope that is returned to the caller. This
necessitated the use of the factory pattern. ThreadFactory cre-
ates the raw Thread object and a boost::shared ptr wrap-
per, and calls a private helper method of the class implement-
ing the Thread interface (in this case, PosixThread::weakRef)
to allow it to make add weak reference to itself through the
boost::shared ptr envelope.

Thread and Runnable objects reference each other. A Runnable
object may need to know about the thread in which it is executing,
and a Thread, obviously, needs to know what Runnable object it
is hosting. This interdependency is further complicated because the

lifecycle of each object is independent of the other. An application
may create a set of Runnable object to be reused in different
threads, or it may create and forget a Runnable object once a thread
has been created and started for it.

The Thread class takes a boost::shared ptr reference to the
hosted Runnable object in its constructor, while the Runnable
class has an explicit thread method to allow explicit binding of
the hosted thread. ThreadFactory::newThread binds the objects
to each other.

7.7 ThreadManager

ThreadManager creates a pool of worker threads and allows ap-
plications to schedule tasks for execution as free worker threads
become available. The ThreadManager does not implement dy-
namic thread pool resizing, but provides primitives so that applica-
tions can add and remove threads based on load. This approach was
chosen because implementing load metrics and thread pool size is
very application specific. For example some applications may want
to adjust pool size based on running-average of work arrival rates
that are measured via polled samples. Others may simply wish to
react immediately to work-queue depth high and low water marks.
Rather than trying to create a complex API abstract enough to cap-
ture these different approaches, we simply leave it up to the par-
ticular application and provide the primitives to enact the desired
policy and sample current status.

7.8 TimerManager

TimerManager allows applications to schedule Runnable objects
for execution at some point in the future. Its specific task is to al-
lows applications to sample ThreadManager load at regular inter-
vals and make changes to the thread pool size based on application
policy. Of course, it can be used to generate any number of timer or
alarm events.

The default implementation of TimerManager uses a single thread
to execute expired Runnable objects. Thus, if a timer operation
needs to do a large amount of work and especially if it needs to do
blocking I/O, that should be done in a separate thread.

7.9 Nonblocking Operation

Though the Thrift transport interfaces map more directly to a
blocking I/O model, we have implemented a high performance
TNonBlockingServer in C++ based on libevent and the TFramedTransport.
We implemented this by moving all I/O into one tight event loop
using a state machine. Essentially, the event loop reads framed
requests into TMemoryBuffer objects. Once entire requests are
ready, they are dispatched to the TProcessor object which can
read directly from the data in memory.

7.10 Compiler

The Thrift compiler is implemented in C++ using standard lex/yacc
lexing and parsing. Though it could have been implemented with
fewer lines of code in another language (i.e. Python Lex-Yacc
(PLY) or ocamlyacc), using C++ forces explicit definition of the
language constructs. Strongly typing the parse tree elements (de-
batably) makes the code more approachable for new developers.

Code generation is done using two passes. The first pass looks
only for include files and type definitions. Type definitions are not
checked during this phase, since they may depend upon include
files. All included files are sequentially scanned in a first pass. Once
the include tree has been resolved, a second pass over all files is
taken that inserts type definitions into the parse tree and raises an
error on any undefined types. The program is then generated against
the parse tree.



Due to inherent complexities and potential for circular dependen-
cies, we explicitly disallow forward declaration. Two Thrift structs
cannot each contain an instance of the other. (Since we do not al-
low null struct instances in the generated C++ code, this would
actually be impossible.)

7.11 TFileTransport

The TFileTransport logs Thrift requests/structs by framing in-
coming data with its length and writing it out to disk. Using a
framed on-disk format allows for better error checking and helps
with the processing of a finite number of discrete events. The
TFileWriterTransport uses a system of swapping in-memory
buffers to ensure good performance while logging large amounts
of data. A Thrift log file is split up into chunks of a specified size;
logged messages are not allowed to cross chunk boundaries. A mes-
sage that would cross a chunk boundary will cause padding to be
added until the end of the chunk and the first byte of the message
are aligned to the beginning of the next chunk. Partitioning the file
into chunks makes it possible to read and interpret data from a par-
ticular point in the file.

8. Facebook Thrift Services
Thrift has been employed in a large number of applications at
Facebook, including search, logging, mobile, ads and the developer
platform. Two specific usages are discussed below.

8.1 Search

Thrift is used as the underlying protocol and transport layer for the
Facebook Search service. The multi-language code generation is
well suited for search because it allows for application development
in an efficient server side language (C++) and allows the Facebook
PHP-based web application to make calls to the search service
using Thrift PHP libraries. There is also a large variety of search
stats, deployment and testing functionality that is built on top of
generated Python code. Additionally, the Thrift log file format is
used as a redo log for providing real-time search index updates.
Thrift has allowed the search team to leverage each language for its
strengths and to develop code at a rapid pace.

8.2 Logging

The Thrift TFileTransport functionality is used for structured
logging. Each service function definition along with its parameters
can be considered to be a structured log entry identified by the
function name. This log can then be used for a variety of purposes,
including inline and offline processing, stats aggregation and as a
redo log.

9. Conclusions
Thrift has enabled Facebook to build scalable backend services
efficiently by enabling engineers to divide and conquer. Application
developers can focus on application code without worrying about
the sockets layer. We avoid duplicated work by writing buffering
and I/O logic in one place, rather than interspersing it in each
application.

Thrift has been employed in a wide variety of applications at Face-
book, including search, logging, mobile, ads, and the developer
platform. We have found that the marginal performance cost in-
curred by an extra layer of software abstraction is far eclipsed by
the gains in developer efficiency and systems reliability.

A. Similar Systems
The following are software systems similar to Thrift. Each is
(very!) briefly described:

• SOAP. XML-based. Designed for web services via HTTP, ex-
cessive XML parsing overhead.

• CORBA. Relatively comprehensive, debatably overdesigned
and heavyweight. Comparably cumbersome software instal-
lation.

• COM. Embraced mainly in Windows client softare. Not an
entirely open solution.

• Pillar. Lightweight and high-performance, but missing version-
ing and abstraction.

• Protocol Buffers. Closed-source, owned by Google. Described
in Sawzall paper.

Acknowledgments
Many thanks for feedback on Thrift (and extreme trial by fire) are
due to Martin Smith, Karl Voskuil and Yishan Wong.

Thrift is a successor to Pillar, a similar system developed by Adam
D’Angelo, first while at Caltech and continued later at Facebook.
Thrift simply would not have happened without Adam’s insights.

References
[1] Kempf, William, “Boost.Threads”, http://www.boost.org/doc/

html/threads.html

[2] Henkel, Philipp, “threadpool”, http://threadpool.sourceforge.
net


