CS 686: Special Topics in Big Data

Distributed Consensus

Lecture 12



There are only two hard problems in distributed
systems:

2. Exactly-once delivery
1. Guaranteed order of messages
2. Exactly-once delivery

-- Mathias Verraes
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The Great Unknown

It's hard to be sure about anything

True in general, but even more true with distributed
systems

s a node down, or is the network slow?
Did we shut the service down, or did it crash?

s the system in a steady state?

f a network breaks into partitions and nobody is
around to hear it, does it make a sound?

9/24/17 CS 686: Big Data



Today's Agenda

= Replication and Failures
= Conflict Resolution
= Consensus Algorithms

= Transactions
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Replication

Maintaining replicas is a great way to make our
systems resilient to failures

We can also leverage replicas as a cache to improve
performance

If a node is closer, has less load, etc. then we can use
it instead of the original copy
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Managing Replicas

Any time we start replicating data across multiple
machines, things start to get complicated

What happens when the replicas get modified at the
same time?
Vector clocks: one solution we saw from Dynamo

Another approach is providing distributed
transaction support

Downside: latency

9/24/17 CS 686: Big Data



Reaching Consensus
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Solving this problem with replicas is just one example
of coming to a consensus in distributed systems
Some other examples:

Clock synchronization, broadcasting, leader election

Reaching a consensus can be difficult due to:
Heterogeneity
Geography (...latency)

Hardware and software failures
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CAP Theorem (1/3)

Deals with the guarantees that can be provided by
distributed systems, especially during failures

Observed by Eric Brewer

Co-founder of Inktomi
Search engine tech, ISP software

Professor at UC Berkeley
Later formalized in 2002 with a proof by Gilbert and Lynch

Brewer'’s Conjecture and the Feasibility of Consistent,
Available, Partition-tolerant Web Services. SIGACT. 2002.
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CAP Theorem (2/3)

= Consistency:
All nodes see the same data.

= Availabllity:
A partial failure does not stop the system.

= Partition Tolerance:
The system can handle network partitions.
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CAP Theorem (3/3)
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Important: this isn't a “pick two of the three" kind of
situation

A mistake that is made frequently

Rather, the CAP theorem describes what a system
does when it encounters a network failure (partition)

If everything is operating normally, the system can
provide both high availability and consistency
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CAP Classifications

AP systems: highly available
Canresultin inconsistent views of the dataset

Shopping cart

CP systems: highly consistent

Can experience downtime if a partition occurs

That's okay, because we're assuming it's better to be
offline than cause inconsistencies!

Billing system
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Consistency-Latency Tradeoff

Weak Consistency Strong =—-
Conflict Resolution Distributed Consensus Distributed Transactions
Conflicts are allowed, and Majority of replicas must All replicas must agree on a
may be resolved by client agree on a single consistent consistent value to commit;
applications value roll-back on disagreement
* Dynamo + Chubby Lock Service * F1
L Voldemort y L ZooKeeper P, L Spanner )
Low Latency High se—-
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Lamport Clocks

Logical clocks used to determine the order of events in a
distributed system

Establishes a happens before relationship between
events:

A happened before B
Often this is just as useful as synchronizing clocks
(common example: Makefiles)
The transitive property applies:
A happened before B
B happened before C
Then A happened before C
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Lamport Clock Implementation
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Algorithm based on a simple counter

Each event increments the counter

Sending/receiving messages, storing a file, etc.

When sending messages, a timestamp is attached
with the current value of the counter

When receiving messages, if the timestamp is
greater than the local clock, it skips ahead
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Lamport Clocks: 3 Processes

A 0 1 4 5 7 11

WA

= Example concurrent events: C1 and B5

= We cannot conclude that CO causally precedes A1
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Vector Clocks
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Lamport clocks are simple, but we can only
determine the total ordering of events

With vector clocks, we assume we know about each
participating process

Instead of sending a single timestamp, send a vector
of timestamps for each process

Update pairwise, same as Lamport clocks

Enables causality to be captured
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Vector Clocks: 3 Processes
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Comparing Vectors

= Consider two vectors, Xand Y:

= If each element of Xis <=Y:
X causally precedes Y

= If each timestamp in Xis >=Y:
Y causally precedes X

= Else: Xand Y are concurrent
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Paxos
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Described in The Part Time Parliament by
Leslie Lamport

Describes a fictional parliamentary consensus
protocol used by legislators in Paxos, Greece

Took around 10 years to get published... it was a bit
unconventional

Used frequently to achieve distributed consensus
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Paxos Protocol

Paxos is quorum-based
A majority of nodes must agree

Nodes play a variety of roles: leader, proposer, client,
acceptor, learner

Workflow:
A leader is elected to coordinate the process
A proposed value is sent to participating nodes

Once a majority of nodes agrees on the value,
consensus is reached
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Fault Tolerance
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Everything moves along nicely when there are no
network failures

When a failure occurs, multiple leaders can be elected

As long as a leader receives a majority of votes (from
its overall Paxos group), writes will succeed

If @ majority can't be obtained, writes will fail
Guarantees safety but not liveness

Often used by CP systems
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Paxos Variants

Single decree Paxos: reaching an agreement on a
single object

Replica, file, log entry, etc.

Multi-Paxos: re-uses leader nodes for multiple
agreements
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Implementation Difficulties
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Paxos is notoriously difficult to get right
A simple protocol with lots of edge cases

Google published a paper on Paxos-related
engineering challenges:
Paxos Made Live — An Engineering Perspective

Paxos is used by their Chubby Lock Service

There's also Paxos Made Simple by Lamport

"Simple” is a bit generous
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Raft

Raft is an attempt to build a more understandable

consensus algorithm

Each component can be explained in isolation
Leader, candidate, follower

Uses strong leaders
One leader per term

When a failed node comes back up, it assumes that it is a
follower and waits for a timeout rather than trying to
become aleader immediately

Each leader election increments the term number
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Raft: Components and Flow

Times Out )
Receives

Times Out Majority Vote

N\ N\

Starts/Recovers
{ Follower (Candidate) [ Leader J

Discovers
New Leader

Discovers Server with Higher Term
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Understanding Raft

= Raft is simpler, and tends to be better understood

= This has led to plenty of resources for learning Raft:

= http://thesecretlivesofdata.com/raft/

= There are also lots of library implementations
available for nearly all programming languages
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Zookeeper Atomic Broadcast
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Zookeeper is often used to coordinate between
components and detect failures

Supports atomic broadcast, where not only
consensus must be reached but event ordering
matters

ZAB

Three phases: discovery, synchronization, broadcast
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Call Me Maybe: Jepsen
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= For some great reading material, check out the

Jepsen articles by Kyle Kingsbury:
= https://aphyr.com/tags/jepsen

= Breaks down systems’ consistency claims

= Even includes illustrations!

.

HEY
THE NET

ST MET YOU
Rll('IS LAGGY
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= Replication and Failures
= Conflict Resolution
= Consensus Algorithms

= Transactions
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Distributed Transactions

Thus far, we've discussed distributed agreement

Majority rules, and we can all agree on the outcome

This isn't always good enough:
Request 1: decrement account by $500

Request 2: add 10% interest to account

What we need is support for transactions:
Ensuring serializability

All nodes commit to a particular value/event
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Two-Phase Commit
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Rather than a simple majority, two-phase commit
(2PC) requires consensus from all nodes

During a transaction, locks are acquired across all
replicas

Increases latency

Replicas attempt to apply the transaction to their log

Allows roll-back in the case of disagreement

If all replicas agree, the transaction is finalized
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Three-Phase Commit

2PC is a blocking operation
Guarantees safety
If a failure occurs, the system will hang

In three-phase commit, a timeout is added
If the transaction doesn't complete, it is aborted

Weakness: only handles node failures, not network
partitions

What happens when everyone agrees, but only some
of the participants get the finalize message?
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2PC on Paxos
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Google Spanner and F1 execute 2PC on top of
Paxos groups

Each group becomes one participant in 2PC

Hierarchical consistency model: guarantees cross-
group consistency

Increases latency, but the Spanner/F1 designers saw
an increase in developer productivity because they
no longer had to deal with consistency issues
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