
Lecture 12

CS 686: Special Topics in Big Data

Distributed Consensus
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There are only two hard problems in distributed 
systems:

2.  Exactly-once delivery
1. Guaranteed order of messages
2. Exactly-once delivery

-- Mathias Verraes



§ It’s hard to be sure about anything
§ True in general, but even more true with distributed 

systems

§ Is a node down, or is the network slow?

§ Did we shut the service down, or did it crash?

§ Is the system in a steady state? 

§ If a network breaks into partitions and nobody is 
around to hear it, does it make a sound?

The Great Unknown
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§ Replication and Failures

§ Conflict Resolution

§ Consensus Algorithms

§ Transactions

Today’s Agenda
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§ Maintaining replicas is a great way to make our 
systems resilient to failures

§ We can also leverage replicas as a cache to improve 
performance
§ If a node is closer, has less load, etc. then we can use 

it instead of the original copy 

Replication
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§ Any time we start replicating data across multiple 
machines, things start to get complicated

§ What happens when the replicas get modified at the 
same time?
§ Vector clocks: one solution we saw from Dynamo

§ Another approach is providing distributed 
transaction support
§ Downside: latency

Managing Replicas
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§ Solving this problem with replicas is just one example 
of coming to a consensus in distributed systems

§ Some other examples:
§ Clock synchronization, broadcasting, leader election

§ Reaching a consensus can be difficult due to:
§ Heterogeneity
§ Geography (…latency)
§ Hardware and software failures

Reaching Consensus
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§ Deals with the guarantees that can be provided by 
distributed systems, especially during failures

§ Observed by Eric Brewer
§ Co-founder of Inktomi

§ Search engine tech, ISP software
§ Professor at UC Berkeley

§ Later formalized in 2002 with a proof by Gilbert and Lynch 
§ Brewer’s Conjecture and the Feasibility of Consistent, 

Available, Partition-tolerant Web Services. SIGACT. 2002.

CAP Theorem (1/3)
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§ Consistency:
All nodes see the same data.

§ Availability:
A partial failure does not stop the system.

§ Partition Tolerance:
The system can handle network partitions.

CAP Theorem (2/3)
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§ Important: this isn’t a “pick two of the three” kind of 
situation
§ A mistake that is made frequently

§ Rather, the CAP theorem describes what a system 
does when it encounters a network failure (partition)

§ If everything is operating normally, the system can 
provide both high availability and consistency

CAP Theorem (3/3)
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§ AP systems: highly available
§ Can result in inconsistent views of the dataset
§ Shopping cart

§ CP systems: highly consistent
§ Can experience downtime if a partition occurs

§ That’s okay, because we’re assuming it’s better to be 
offline than cause inconsistencies!

§ Billing system

CAP Classifications
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Consistency-Latency Tradeoff
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§ Replication and Failures

§ Conflict Resolution

§ Consensus Algorithms

§ Transactions

Today’s Agenda
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§ Logical clocks used to determine the order of events in a 
distributed system

§ Establishes a happens before relationship between 
events:
§ A happened before B
§ Often this is just as useful as synchronizing clocks 

(common example: Makefiles)
§ The transitive property applies:

§ A happened before B
§ B happened before C
§ Then A happened before C

Lamport Clocks
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§ Algorithm based on a simple counter

§ Each event increments the counter
§ Sending/receiving messages, storing a file, etc.

§ When sending messages, a timestamp is attached 
with the current value of the counter

§ When receiving messages, if the timestamp is 
greater than the local clock, it skips ahead

Lamport Clock Implementation
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Lamport Clocks: 3 Processes
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§ Example concurrent events: C1 and B5
§ We cannot conclude that C0 causally precedes A1



§ Lamport clocks are simple, but we can only 
determine the total ordering of events

§ With vector clocks, we assume we know about each 
participating process

§ Instead of sending a single timestamp, send a vector
of timestamps for each process
§ Update pairwise, same as Lamport clocks

§ Enables causality to be captured

Vector Clocks
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Vector Clocks: 3 Processes
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§ Consider two vectors, X and Y:

§ If each element of X is <= Y:
X causally precedes Y

§ If each timestamp in X is >= Y:
Y causally precedes X

§ Else: X and Y are concurrent

Comparing Vectors
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§ Replication and Failures

§ Conflict Resolution

§ Consensus Algorithms

§ Transactions

Today’s Agenda
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§ Described in The Part Time Parliament by 
Leslie Lamport

§ Describes a fictional parliamentary consensus 
protocol used by legislators in Paxos, Greece
§ Took around 10 years to get published… it was a bit 

unconventional

§ Used frequently to achieve distributed consensus

Paxos
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§ Paxos is quorum-based
§ A majority of nodes must agree
§ Nodes play a variety of roles: leader, proposer, client, 

acceptor, learner

§ Workflow:
1. A leader is elected to coordinate the process
2. A proposed value is sent to participating nodes
3. Once a majority of nodes agrees on the value, 

consensus is reached

Paxos Protocol
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§ Everything moves along nicely when there are no 
network failures
§ When a failure occurs, multiple leaders can be elected

§ As long as a leader receives a majority of votes (from 
its overall Paxos group), writes will succeed

§ If a majority can’t be obtained, writes will fail
§ Guarantees safety but not liveness
§ Often used by CP systems

Fault Tolerance
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§ Single decree Paxos: reaching an agreement on a 
single object
§ Replica, file, log entry, etc.

§ Multi-Paxos: re-uses leader nodes for multiple 
agreements

Paxos Variants
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§ Paxos is notoriously difficult to get right

§ A simple protocol with lots of edge cases

§ Google published a paper on Paxos-related 
engineering challenges:
Paxos Made Live – An Engineering Perspective
§ Paxos is used by their Chubby Lock Service

§ There’s also Paxos Made Simple by Lamport
§ ”Simple” is a bit generous

Implementation Difficulties
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§ Raft is an attempt to build a more understandable 
consensus algorithm

§ Each component can be explained in isolation
§ Leader, candidate, follower

§ Uses strong leaders
§ One leader per term
§ When a failed node comes back up, it assumes that it is a 

follower and waits for a timeout rather than trying to 
become a leader immediately

§ Each leader election increments the term number

Raft
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Raft: Components and Flow
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§ Raft is simpler, and tends to be better understood

§ This has led to plenty of resources for learning Raft:
§ http://thesecretlivesofdata.com/raft/

§ There are also lots of library implementations 
available for nearly all programming languages

Understanding Raft
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§ Zookeeper is often used to coordinate between 
components and detect failures

§ Supports atomic broadcast, where not only 
consensus must be reached but event ordering 
matters
§ ZAB

§ Three phases: discovery, synchronization, broadcast

Zookeeper Atomic Broadcast
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§ For some great reading material, check out the 
Jepsen articles by Kyle Kingsbury:
§ https://aphyr.com/tags/jepsen

§ Breaks down systems’ consistency claims
§ Even includes illustrations!

Call Me Maybe: Jepsen
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§ Thus far, we’ve discussed distributed agreement
§ Majority rules, and we can all agree on the outcome

§ This isn’t always good enough:
1. Request 1: decrement account by $500
2. Request 2: add 10% interest to account

§ What we need is support for transactions:
§ Ensuring serializability
§ All nodes commit to a particular value/event

Distributed Transactions

9/24/17 CS 686: Big Data 33



§ Rather than a simple majority, two-phase commit 
(2PC) requires consensus from all nodes

§ During a transaction, locks are acquired across all 
replicas
§ Increases latency

§ Replicas attempt to apply the transaction to their log
§ Allows roll-back in the case of disagreement

§ If all replicas agree, the transaction is finalized

Two-Phase Commit
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§ 2PC is a blocking operation
§ Guarantees safety
§ If a failure occurs, the system will hang

§ In three-phase commit, a timeout is added
§ If the transaction doesn’t complete, it is aborted
§ Weakness: only handles node failures, not network 

partitions
§ What happens when everyone agrees, but only some 

of the participants get the finalize message?

Three-Phase Commit
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§ Google Spanner and F1 execute 2PC on top of
Paxos groups

§ Each group becomes one participant in 2PC

§ Hierarchical consistency model: guarantees cross-
group consistency

§ Increases latency, but the Spanner/F1 designers saw 
an increase in developer productivity because they 
no longer had to deal with consistency issues

2PC on Paxos
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