CS 686: Special Topics in Big Data

Distributed Consensus

Lecture 12

There are only two hard problems in distributed
systems:

2. Exactly-once delivery
1. Guaranteed order of messages
2. Exactly-once delivery

-- Mathias Verraes

9/24/17 CS 686: Big Data

The Great Unknown

It's hard to be sure about anything

True in general, but even more true with distributed
systems

s a node down, or is the network slow?
Did we shut the service down, or did it crash?

s the system in a steady state?

f a network breaks into partitions and nobody is
around to hear it, does it make a sound?

9/24/17 CS 686: Big Data

Today's Agenda

= Replication and Failures
= Conflict Resolution
= Consensus Algorithms

= Transactions

9/24/17 CS 686: Big Data

Today's Agenda

= Replication and Failures
= Conflict Resolution
= Consensus Algorithms

= Transactions

9/24/17 CS 686: Big Data

Replication

Maintaining replicas is a great way to make our
systems resilient to failures

We can also leverage replicas as a cache to improve
performance

If a node is closer, has less load, etc. then we can use
it instead of the original copy

9/24/17 CS 686: Big Data

Managing Replicas

Any time we start replicating data across multiple
machines, things start to get complicated

What happens when the replicas get modified at the
same time?
Vector clocks: one solution we saw from Dynamo

Another approach is providing distributed
transaction support

Downside: latency

9/24/17 CS 686: Big Data

Reaching Consensus

9/24/17

Solving this problem with replicas is just one example
of coming to a consensus in distributed systems
Some other examples:

Clock synchronization, broadcasting, leader election

Reaching a consensus can be difficult due to:
Heterogeneity
Geography (...latency)

Hardware and software failures

CS 686: Big Data

CAP Theorem (1/3)

Deals with the guarantees that can be provided by
distributed systems, especially during failures

Observed by Eric Brewer

Co-founder of Inktomi
Search engine tech, ISP software

Professor at UC Berkeley
Later formalized in 2002 with a proof by Gilbert and Lynch

Brewer'’s Conjecture and the Feasibility of Consistent,
Available, Partition-tolerant Web Services. SIGACT. 2002.

9/24/17 CS 686: Big Data 9

CAP Theorem (2/3)

= Consistency:
All nodes see the same data.

= Availabllity:
A partial failure does not stop the system.

= Partition Tolerance:
The system can handle network partitions.

9/24/17 CS 686: Big Data

10

CAP Theorem (3/3)

9/24/17

Important: this isn't a “pick two of the three" kind of
situation

A mistake that is made frequently

Rather, the CAP theorem describes what a system
does when it encounters a network failure (partition)

If everything is operating normally, the system can
provide both high availability and consistency

CS 686: Big Data

11

CAP Classifications

AP systems: highly available
Canresultin inconsistent views of the dataset

Shopping cart

CP systems: highly consistent

Can experience downtime if a partition occurs

That's okay, because we're assuming it's better to be
offline than cause inconsistencies!

Billing system

9/24/17 CS 686: Big Data 12

Consistency-Latency Tradeoff

Weak Consistency Strong =—-
Conflict Resolution Distributed Consensus Distributed Transactions
Conflicts are allowed, and Majority of replicas must All replicas must agree on a
may be resolved by client agree on a single consistent consistent value to commit;
applications value roll-back on disagreement
* Dynamo + Chubby Lock Service * F1
L Voldemort y L ZooKeeper P, L Spanner)
Low Latency High se—-

9/24/17 CS 686: Big Data 13

Today's Agenda

= Replication and Failures
= Conflict Resolution
= Consensus Algorithms

= Transactions

9/24/17 CS 686: Big Data

14

Lamport Clocks

Logical clocks used to determine the order of events in a
distributed system

Establishes a happens before relationship between
events:

A happened before B
Often this is just as useful as synchronizing clocks
(common example: Makefiles)
The transitive property applies:
A happened before B
B happened before C
Then A happened before C

9/24/17 CS 686: Big Data 15

Lamport Clock Implementation

9/24/17

Algorithm based on a simple counter

Each event increments the counter

Sending/receiving messages, storing a file, etc.

When sending messages, a timestamp is attached
with the current value of the counter

When receiving messages, if the timestamp is
greater than the local clock, it skips ahead

CS 686: Big Data

16

Lamport Clocks: 3 Processes

A 0 1 4 5 7 11

WA

= Example concurrent events: C1 and B5

= We cannot conclude that CO causally precedes A1

9/24/17 CS 686: Big Data 17

Vector Clocks

9/24/17

Lamport clocks are simple, but we can only
determine the total ordering of events

With vector clocks, we assume we know about each
participating process

Instead of sending a single timestamp, send a vector
of timestamps for each process

Update pairwise, same as Lamport clocks

Enables causality to be captured

CS 686: Big Data

18

Vector Clocks: 3 Processes

9/24/17

1 4 5 7 11
\ / / /
[1,0,0] [1,3,0] [1, 6, 1]
\ /
2113|l4]|l5||6]|]|7]|]|S8 ‘ V\ J
/' \ [1,8,10]
0, 0, 1] 1.8, 3] /
[0, 0, 3]
Sl \
1 2 || 3 9 || 10

CS 686: Big Data

19

Comparing Vectors

= Consider two vectors, Xand Y:

= If each element of Xis <=Y:
X causally precedes Y

= If each timestamp in Xis >=Y:
Y causally precedes X

= Else: Xand Y are concurrent

9/24/17 CS 686: Big Data

20

Today's Agenda

= Replication and Failures
= Conflict Resolution
= Consensus Algorithms

= Transactions

9/24/17 CS 686: Big Data

21

Paxos

9/24/17

Described in The Part Time Parliament by
Leslie Lamport

Describes a fictional parliamentary consensus
protocol used by legislators in Paxos, Greece

Took around 10 years to get published... it was a bit
unconventional

Used frequently to achieve distributed consensus

CS 686: Big Data 22

Paxos Protocol

Paxos is quorum-based
A majority of nodes must agree

Nodes play a variety of roles: leader, proposer, client,
acceptor, learner

Workflow:
A leader is elected to coordinate the process
A proposed value is sent to participating nodes

Once a majority of nodes agrees on the value,
consensus is reached

9/24/17 CS 686: Big Data 23

Fault Tolerance

9/24/17

Everything moves along nicely when there are no
network failures

When a failure occurs, multiple leaders can be elected

As long as a leader receives a majority of votes (from
its overall Paxos group), writes will succeed

If @ majority can't be obtained, writes will fail
Guarantees safety but not liveness

Often used by CP systems

CS 686: Big Data

24

Paxos Variants

Single decree Paxos: reaching an agreement on a
single object

Replica, file, log entry, etc.

Multi-Paxos: re-uses leader nodes for multiple
agreements

9/24/17 CS 686: Big Data

25

Implementation Difficulties

9/24/17

Paxos is notoriously difficult to get right
A simple protocol with lots of edge cases

Google published a paper on Paxos-related
engineering challenges:
Paxos Made Live — An Engineering Perspective

Paxos is used by their Chubby Lock Service

There's also Paxos Made Simple by Lamport

"Simple” is a bit generous

CS 686: Big Data 26

Raft

Raft is an attempt to build a more understandable

consensus algorithm

Each component can be explained in isolation
Leader, candidate, follower

Uses strong leaders
One leader per term

When a failed node comes back up, it assumes that it is a
follower and waits for a timeout rather than trying to
become aleader immediately

Each leader election increments the term number

9/24/17 CS 686: Big Data 27

Raft: Components and Flow

Times Out)
Receives

Times Out Majority Vote

N\ N\

Starts/Recovers
{ Follower (Candidate) [Leader J

Discovers
New Leader

Discovers Server with Higher Term

9/24/17 CS 686: Big Data

28

Understanding Raft

= Raft is simpler, and tends to be better understood

= This has led to plenty of resources for learning Raft:

= http://thesecretlivesofdata.com/raft/

= There are also lots of library implementations
available for nearly all programming languages

9/24/17 CS 686: Big Data 29

Zookeeper Atomic Broadcast

9/24/17

Zookeeper is often used to coordinate between
components and detect failures

Supports atomic broadcast, where not only
consensus must be reached but event ordering
matters

ZAB

Three phases: discovery, synchronization, broadcast

CS 686: Big Data 30

Call Me Maybe: Jepsen

9/24/17

= For some great reading material, check out the

Jepsen articles by Kyle Kingsbury:
= https://aphyr.com/tags/jepsen

= Breaks down systems’ consistency claims

= Even includes illustrations!

.

HEY
THE NET

ST MET YOU
Rll('IS LAGGY

CS 686: Big Data

IF YOU
LIKE IT
THEN YOU
DYNAMO
A RING
ONIT

31

Today's Agenda

= Replication and Failures
= Conflict Resolution
= Consensus Algorithms

= Transactions

9/24/17 CS 686: Big Data

32

Distributed Transactions

Thus far, we've discussed distributed agreement

Majority rules, and we can all agree on the outcome

This isn't always good enough:
Request 1: decrement account by $500

Request 2: add 10% interest to account

What we need is support for transactions:
Ensuring serializability

All nodes commit to a particular value/event

9/24/17 CS 686: Big Data

33

Two-Phase Commit

9/24/17

Rather than a simple majority, two-phase commit
(2PC) requires consensus from all nodes

During a transaction, locks are acquired across all
replicas

Increases latency

Replicas attempt to apply the transaction to their log

Allows roll-back in the case of disagreement

If all replicas agree, the transaction is finalized

CS 686: Big Data 34

Three-Phase Commit

2PC is a blocking operation
Guarantees safety
If a failure occurs, the system will hang

In three-phase commit, a timeout is added
If the transaction doesn't complete, it is aborted

Weakness: only handles node failures, not network
partitions

What happens when everyone agrees, but only some
of the participants get the finalize message?

9/24/17 CS 686: Big Data

35

2PC on Paxos

9/24/17

Google Spanner and F1 execute 2PC on top of
Paxos groups

Each group becomes one participant in 2PC

Hierarchical consistency model: guarantees cross-
group consistency

Increases latency, but the Spanner/F1 designers saw
an increase in developer productivity because they
no longer had to deal with consistency issues

CS 686: Big Data 36

