
Lecture 12

CS 686: Special Topics in Big Data

Distributed Consensus

9/24/17 CS 686: Big Data 2

There are only two hard problems in distributed
systems:

2. Exactly-once delivery
1. Guaranteed order of messages
2. Exactly-once delivery

-- Mathias Verraes

§ It’s hard to be sure about anything
§ True in general, but even more true with distributed

systems

§ Is a node down, or is the network slow?

§ Did we shut the service down, or did it crash?

§ Is the system in a steady state?

§ If a network breaks into partitions and nobody is
around to hear it, does it make a sound?

The Great Unknown

9/24/17 CS 686: Big Data 3

§ Replication and Failures

§ Conflict Resolution

§ Consensus Algorithms

§ Transactions

Today’s Agenda

9/24/17 CS 686: Big Data 4

§ Replication and Failures

§ Conflict Resolution

§ Consensus Algorithms

§ Transactions

Today’s Agenda

9/24/17 CS 686: Big Data 5

§ Maintaining replicas is a great way to make our
systems resilient to failures

§ We can also leverage replicas as a cache to improve
performance
§ If a node is closer, has less load, etc. then we can use

it instead of the original copy

Replication

9/24/17 CS 686: Big Data 6

§ Any time we start replicating data across multiple
machines, things start to get complicated

§ What happens when the replicas get modified at the
same time?
§ Vector clocks: one solution we saw from Dynamo

§ Another approach is providing distributed
transaction support
§ Downside: latency

Managing Replicas

9/24/17 CS 686: Big Data 7

§ Solving this problem with replicas is just one example
of coming to a consensus in distributed systems

§ Some other examples:
§ Clock synchronization, broadcasting, leader election

§ Reaching a consensus can be difficult due to:
§ Heterogeneity
§ Geography (…latency)
§ Hardware and software failures

Reaching Consensus

9/24/17 CS 686: Big Data 8

§ Deals with the guarantees that can be provided by
distributed systems, especially during failures

§ Observed by Eric Brewer
§ Co-founder of Inktomi

§ Search engine tech, ISP software
§ Professor at UC Berkeley

§ Later formalized in 2002 with a proof by Gilbert and Lynch
§ Brewer’s Conjecture and the Feasibility of Consistent,

Available, Partition-tolerant Web Services. SIGACT. 2002.

CAP Theorem (1/3)

9/24/17 CS 686: Big Data 9

§ Consistency:
All nodes see the same data.

§ Availability:
A partial failure does not stop the system.

§ Partition Tolerance:
The system can handle network partitions.

CAP Theorem (2/3)

9/24/17 CS 686: Big Data 10

§ Important: this isn’t a “pick two of the three” kind of
situation
§ A mistake that is made frequently

§ Rather, the CAP theorem describes what a system
does when it encounters a network failure (partition)

§ If everything is operating normally, the system can
provide both high availability and consistency

CAP Theorem (3/3)

9/24/17 CS 686: Big Data 11

§ AP systems: highly available
§ Can result in inconsistent views of the dataset
§ Shopping cart

§ CP systems: highly consistent
§ Can experience downtime if a partition occurs

§ That’s okay, because we’re assuming it’s better to be
offline than cause inconsistencies!

§ Billing system

CAP Classifications

9/24/17 CS 686: Big Data 12

Consistency-Latency Tradeoff

9/24/17 CS 686: Big Data 13

§ Replication and Failures

§ Conflict Resolution

§ Consensus Algorithms

§ Transactions

Today’s Agenda

9/24/17 CS 686: Big Data 14

§ Logical clocks used to determine the order of events in a
distributed system

§ Establishes a happens before relationship between
events:
§ A happened before B
§ Often this is just as useful as synchronizing clocks

(common example: Makefiles)
§ The transitive property applies:

§ A happened before B
§ B happened before C
§ Then A happened before C

Lamport Clocks

9/24/17 CS 686: Big Data 15

§ Algorithm based on a simple counter

§ Each event increments the counter
§ Sending/receiving messages, storing a file, etc.

§ When sending messages, a timestamp is attached
with the current value of the counter

§ When receiving messages, if the timestamp is
greater than the local clock, it skips ahead

Lamport Clock Implementation

9/24/17 CS 686: Big Data 16

Lamport Clocks: 3 Processes

9/24/17 CS 686: Big Data 17

§ Example concurrent events: C1 and B5
§ We cannot conclude that C0 causally precedes A1

§ Lamport clocks are simple, but we can only
determine the total ordering of events

§ With vector clocks, we assume we know about each
participating process

§ Instead of sending a single timestamp, send a vector
of timestamps for each process
§ Update pairwise, same as Lamport clocks

§ Enables causality to be captured

Vector Clocks

9/24/17 CS 686: Big Data 18

Vector Clocks: 3 Processes

9/24/17 CS 686: Big Data 19

§ Consider two vectors, X and Y:

§ If each element of X is <= Y:
X causally precedes Y

§ If each timestamp in X is >= Y:
Y causally precedes X

§ Else: X and Y are concurrent

Comparing Vectors

9/24/17 CS 686: Big Data 20

§ Replication and Failures

§ Conflict Resolution

§ Consensus Algorithms

§ Transactions

Today’s Agenda

9/24/17 CS 686: Big Data 21

§ Described in The Part Time Parliament by
Leslie Lamport

§ Describes a fictional parliamentary consensus
protocol used by legislators in Paxos, Greece
§ Took around 10 years to get published… it was a bit

unconventional

§ Used frequently to achieve distributed consensus

Paxos

9/24/17 CS 686: Big Data 22

§ Paxos is quorum-based
§ A majority of nodes must agree
§ Nodes play a variety of roles: leader, proposer, client,

acceptor, learner

§ Workflow:
1. A leader is elected to coordinate the process
2. A proposed value is sent to participating nodes
3. Once a majority of nodes agrees on the value,

consensus is reached

Paxos Protocol

9/24/17 CS 686: Big Data 23

§ Everything moves along nicely when there are no
network failures
§ When a failure occurs, multiple leaders can be elected

§ As long as a leader receives a majority of votes (from
its overall Paxos group), writes will succeed

§ If a majority can’t be obtained, writes will fail
§ Guarantees safety but not liveness
§ Often used by CP systems

Fault Tolerance

9/24/17 CS 686: Big Data 24

§ Single decree Paxos: reaching an agreement on a
single object
§ Replica, file, log entry, etc.

§ Multi-Paxos: re-uses leader nodes for multiple
agreements

Paxos Variants

9/24/17 CS 686: Big Data 25

§ Paxos is notoriously difficult to get right

§ A simple protocol with lots of edge cases

§ Google published a paper on Paxos-related
engineering challenges:
Paxos Made Live – An Engineering Perspective
§ Paxos is used by their Chubby Lock Service

§ There’s also Paxos Made Simple by Lamport
§ ”Simple” is a bit generous

Implementation Difficulties

9/24/17 CS 686: Big Data 26

§ Raft is an attempt to build a more understandable
consensus algorithm

§ Each component can be explained in isolation
§ Leader, candidate, follower

§ Uses strong leaders
§ One leader per term
§ When a failed node comes back up, it assumes that it is a

follower and waits for a timeout rather than trying to
become a leader immediately

§ Each leader election increments the term number

Raft

9/24/17 CS 686: Big Data 27

Raft: Components and Flow

9/24/17 CS 686: Big Data 28

§ Raft is simpler, and tends to be better understood

§ This has led to plenty of resources for learning Raft:
§ http://thesecretlivesofdata.com/raft/

§ There are also lots of library implementations
available for nearly all programming languages

Understanding Raft

9/24/17 CS 686: Big Data 29

§ Zookeeper is often used to coordinate between
components and detect failures

§ Supports atomic broadcast, where not only
consensus must be reached but event ordering
matters
§ ZAB

§ Three phases: discovery, synchronization, broadcast

Zookeeper Atomic Broadcast

9/24/17 CS 686: Big Data 30

§ For some great reading material, check out the
Jepsen articles by Kyle Kingsbury:
§ https://aphyr.com/tags/jepsen

§ Breaks down systems’ consistency claims
§ Even includes illustrations!

Call Me Maybe: Jepsen

9/24/17 CS 686: Big Data 31

§ Replication and Failures

§ Conflict Resolution

§ Consensus Algorithms

§ Transactions

Today’s Agenda

9/24/17 CS 686: Big Data 32

§ Thus far, we’ve discussed distributed agreement
§ Majority rules, and we can all agree on the outcome

§ This isn’t always good enough:
1. Request 1: decrement account by $500
2. Request 2: add 10% interest to account

§ What we need is support for transactions:
§ Ensuring serializability
§ All nodes commit to a particular value/event

Distributed Transactions

9/24/17 CS 686: Big Data 33

§ Rather than a simple majority, two-phase commit
(2PC) requires consensus from all nodes

§ During a transaction, locks are acquired across all
replicas
§ Increases latency

§ Replicas attempt to apply the transaction to their log
§ Allows roll-back in the case of disagreement

§ If all replicas agree, the transaction is finalized

Two-Phase Commit

9/24/17 CS 686: Big Data 34

§ 2PC is a blocking operation
§ Guarantees safety
§ If a failure occurs, the system will hang

§ In three-phase commit, a timeout is added
§ If the transaction doesn’t complete, it is aborted
§ Weakness: only handles node failures, not network

partitions
§ What happens when everyone agrees, but only some

of the participants get the finalize message?

Three-Phase Commit

9/24/17 CS 686: Big Data 35

§ Google Spanner and F1 execute 2PC on top of
Paxos groups

§ Each group becomes one participant in 2PC

§ Hierarchical consistency model: guarantees cross-
group consistency

§ Increases latency, but the Spanner/F1 designers saw
an increase in developer productivity because they
no longer had to deal with consistency issues

2PC on Paxos

9/24/17 CS 686: Big Data 36

