
Lecture 13

CS 686: Special Topics in Big Data

Byzantine Fault Tolerance



§ This week
§ Wrapping up consistency
§ Paper 3

§ Next week
§ Big data programming models
§ MapReduce
§ Analysis Methods

§ Coming up
§ Streaming analysis
§ Project deadline (10/13)

Looking Ahead

9/26/17 CS 686: Big Data 2



§ Spanner

§ Chubby

§ Two Generals Problem

§ Byzantine Generals Problem

Today’s Agenda

9/26/17 CS 686: Big Data 3



§ Spanner

§ Chubby

§ Two Generals Problem

§ Byzantine Generals Problem

Today’s Agenda

9/26/17 CS 686: Big Data 4



§ Our paper this week is:
§ Spanner: Google's Globally-Distributed Database

§ Moves to a more relational-style data model rather 
than key-value, wide column, or documents

§ Also provides stronger consistency guarantees
§ You’ll be hearing about Paxos, 2PC

Spanner

9/26/17 CS 686: Big Data 5



§ What are the trade-offs being made?

§ What are the use cases?
§ Would some applications be better or worse with 

Spanner?

§ What parts were difficult / confusing?

While You Read

9/26/17 CS 686: Big Data 6



§ Spanner

§ Chubby

§ Two Generals Problem

§ Byzantine Generals Problem

Today’s Agenda

9/26/17 CS 686: Big Data 7



9/26/17 CS 686: Big Data 8

“Chubby is intended to operate within a single company, and so 
malicious denial-of-service attacks against it are rare. However, 
mistakes, misunderstandings, and the differing expectations of our 
developers lead to effects that are similar to attacks.”

-- Mike Burrows,
Google, Inc.,

The Chubby lock service for loosely-coupled distributed systems 



§ Chubby is used to coordinate between components 
at Google
§ Locking, name services, config store

§ Partially inspired by the VMS operating system
§ General purpose, global lock service

§ Provides coarse-grained locking capabilities and 
simple storage facilities
§ Based on a file system model

Chubby

9/26/17 CS 686: Big Data 9



suggests that an event notification mechanism would
be useful to avoid polling.

• Even if clients need not poll files periodically, many
will; this is a consequence of supporting many devel-
opers. Thus, caching of files is desirable.

• Our developers are confused by non-intuitive caching
semantics, so we prefer consistent caching.

• To avoid both financial loss and jail time, we provide
security mechanisms, including access control.
A choice that may surprise some readers is that we

do not expect lock use to be fine-grained, in which they
might be held only for a short duration (seconds or less);
instead, we expect coarse-grained use. For example, an
application might use a lock to elect a primary, which
would then handle all access to that data for a consider-
able time, perhaps hours or days. These two styles of use
suggest different requirements from a lock server.
Coarse-grained locks impose far less load on the lock

server. In particular, the lock-acquisition rate is usu-
ally only weakly related to the transaction rate of the
client applications. Coarse-grained locks are acquired
only rarely, so temporary lock server unavailability de-
lays clients less. On the other hand, the transfer of a lock
from client to client may require costly recovery proce-
dures, so one would not wish a fail-over of a lock server
to cause locks to be lost. Thus, it is good for coarse-
grained locks to survive lock server failures, there is little
concern about the overhead of doing so, and such locks
allow many clients to be adequately served by a modest
number of lock servers with somewhat lower availability.
Fine-grained locks lead to different conclusions. Even

brief unavailability of the lock server may cause many
clients to stall. Performance and the ability to add new
servers at will are of great concern because the trans-
action rate at the lock service grows with the combined
transaction rate of clients. It can be advantageous to re-
duce the overhead of locking by not maintaining locks
across lock server failure, and the time penalty for drop-
ping locks every so often is not severe because locks are
held for short periods. (Clients must be prepared to lose
locks during network partitions, so the loss of locks on
lock server fail-over introduces no new recovery paths.)
Chubby is intended to provide only coarse-grained

locking. Fortunately, it is straightforward for clients to
implement their own fine-grained locks tailored to their
application. An application might partition its locks into
groups and use Chubby’s coarse-grained locks to allocate
these lock groups to application-specific lock servers.
Little state is needed to maintain these fine-grain locks;
the servers need only keep a non-volatile, monotonically-
increasing acquisition counter that is rarely updated.
Clients can learn of lost locks at unlock time, and if a
simple fixed-length lease is used, the protocol can be
simple and efficient. The most important benefits of this

client processes

5 servers of a Chubby cell
client

application
chubby
library

client
application

chubby
library

. . .
m

RPCs m mastermmm

PPPPPq

⇣⇣⇣⇣⇣1

Figure 1: System structure

scheme are that our client developers become responsible
for the provisioning of the servers needed to support their
load, yet are relieved of the complexity of implementing
consensus themselves.

2.2 System structure

Chubby has two main components that communicate
via RPC: a server, and a library that client applications
link against; see Figure 1. All communication between
Chubby clients and the servers is mediated by the client
library. An optional third component, a proxy server, is
discussed in Section 3.1.
A Chubby cell consists of a small set of servers (typi-

cally five) known as replicas, placed so as to reduce the
likelihood of correlated failure (for example, in different
racks). The replicas use a distributed consensus protocol
to elect a master; the master must obtain votes from a
majority of the replicas, plus promises that those replicas
will not elect a different master for an interval of a few
seconds known as the master lease. The master lease is
periodically renewed by the replicas provided the master
continues to win a majority of the vote.
The replicas maintain copies of a simple database, but

only the master initiates reads and writes of this database.
All other replicas simply copy updates from the master,
sent using the consensus protocol.
Clients find the master by sending master location

requests to the replicas listed in the DNS. Non-master
replicas respond to such requests by returning the iden-
tity of the master. Once a client has located the master,
the client directs all requests to it either until it ceases
to respond, or until it indicates that it is no longer the
master. Write requests are propagated via the consensus
protocol to all replicas; such requests are acknowledged
when the write has reached a majority of the replicas in
the cell. Read requests are satisfied by the master alone;
this is safe provided the master lease has not expired, as
no other master can possibly exist. If a master fails, the
other replicas run the election protocol when their master
leases expire; a new master will typically be elected in a
few seconds. For example, two recent elections took 6s
and 4s, but we see values as high as 30s (§4.1).

Overview

9/26/17 CS 686: Big Data 10



§ /ls/foo/wombat/pouch

§ ls – ‘lock service’

§ foo – the chubby cell, or instance of the system
§ Found via DNS lookup

§ wombat/pouch – directory and file name
§ Files are just arrays of bytes

File System Interface

9/26/17 CS 686: Big Data 11



§ As mentioned, incorrectly using Chubby is similar to 
an attack

§ Initially, the system had no storage quotas
§ Not intended for a data store
§ Used for one anyway… 1.5 MB file rewritten for every

client action

§ Publish/subscribe
§ Can be used to publish changes, but not the intended 

use case

Abusive Clients

9/26/17 CS 686: Big Data 12



§ Developers rarely consider availability
§ Chubby outages have caused cascading effects!

§ Be careful with API design expectations
§ The system provides an event notification when a 

master failover occurs
§ Should help developers know that they need to verify 

the most recent actions
§ Instead, most applications decided to just crash

§ Developers want to use their own favorite language

Lessons Learned

9/26/17 CS 686: Big Data 13



§ Spanner

§ Chubby

§ Two Generals Problem

§ Byzantine Generals Problem

Today’s Agenda

9/26/17 CS 686: Big Data 14



§ We’ve spent some time discussing failure scenarios 
in distributed systems
§ Sometimes it’s difficult to know what even counts as a 

failure

§ What are the weaknesses of our DFS’s heartbeat 
scheme?

§ We have another type of failures to consider, though:
§ Byzantine failures

Failures

9/26/17 CS 686: Big Data 15



§ Any fault presenting different symptoms to different 
observers

§ A machine with failing RAM may happily produce 
corrupted files/messages
§ Cosmic radiation or faulty hardware can cause bit flips

§ Multiple nodes might think they are the coordinator

§ Digital vs. analog
§ Bits stuck at ½ instead of 0 or 1

Byzantine Failures

9/26/17 CS 686: Big Data 16



§ Suppose two armies are preparing to attack a 
heavily-fortified enemy base

§ If both armies march, then the attack will be a 
success
§ If only one marches, they will be defeated

§ The armies are geographically separated and have 
an unreliable communication medium (messengers)

§ How do we solve this problem?

Two Generals Problem

9/26/17 CS 686: Big Data 17



Two Generals Problem

9/26/17 CS 686: Big Data 18

Note: no army gets to have dragons



§ One approach is to acknowledge the order to attack
§ “We shall attack at dawn on September 25!”
§ “Confirmed: attack at dawn on September 25”

§ Of course, then we’d need to acknowledge the 
acknowledgment
§ Etc.

§ Proven to be unsolvable

Acknowledgment

9/26/17 CS 686: Big Data 19



§ Another approach would be to continue to send 
acknowledgments
§ Each increases your confidence in the attack time
§ This wastes resources (dead messengers)

§ We could monitor message throughput

§ Sequence numbers let us judge the reliability of the 
communications channel 
§ How many messages get lost on average?

Reducing Uncertainty

9/26/17 CS 686: Big Data 20



§ We haven’t considered the issue of traitorous 
messengers

§ What happens if a messenger is captured by the 
enemy and they extract the details of the attack?
§ How would we know this has happened?

§ A predetermined protocol could help…
§ But stronger consistency guarantees reduce the 

likelihood of attacking

Further Complications

9/26/17 CS 686: Big Data 21



§ We generally don’t concern ourselves with military 
strategy when it comes to big data

§ We also have mobile phones, the internet, etc…

§ But: one general may be an ATM, and the other your 
bank
§ Hopefully the general that dispenses cash goes ahead 

while the one that deducts from your account retreats

Applicability

9/26/17 CS 686: Big Data 22



§ The two-phase commit protocol we discussed 
previously is one approach
§ (note: not a solution)

§ During a transaction, locks are acquired across all 
replicas

§ Replicas attempt to apply the transaction to their log
§ Allows roll-back in the case of disagreement

§ If all replicas agree, the transaction is finalized

Two-Phase Commit

9/26/17 CS 686: Big Data 23



§ We essentially centralize decision making by 
introducing a coordinator node
§ Not technically a solution

§ Only when everyone is in agreement, the decision is 
broadcast to all participants and the protocol ends
§ We may be waiting a while to attack

Why 2PC Works

9/26/17 CS 686: Big Data 24



§ Does not guarantee liveness
§ The protocol may run indefinitely

§ The approach used by Google in Spanner reduces 
the chance we’ll get stuck forever, but:
§ A push toward liveness will reduce our confidence in 

the consistency of the algorithm

§ If we can’t trust the messengers, we still have a 
problem

2PC Downsides

9/26/17 CS 686: Big Data 25



Recall: Consistency-Latency Tradeoff

9/26/17 CS 686: Big Data 26



§ Spanner

§ Chubby

§ Two Generals Problem

§ Byzantine Generals Problem

Today’s Agenda

9/26/17 CS 686: Big Data 27



§ Several armies encircle a city

§ The generals have to decide: attack or retreat?
§ Once again, all the generals must all agree or they will 

face their demise
§ This time we’ll assume messages are not lost

§ The complication: there could be traitorous generals

§ Described by Lamport, Shostak, and Pease in The 
Byzantine Generals Problem

Byzantine Generals Problem

9/26/17 CS 686: Big Data 28



§ A general with ill intent could send a vote of ‘yea’ to a 
certain set of generals and ‘nay’ to others

§ The paper proves that to be resilient to such an 
attack we need:
§ 3m + 1 generals to deal with m traitors
§ Each general must be connected to the others by at 

least 2m + 1 communication paths
§ m + 1 rounds of messages exchanged

Manipulating the Vote

9/26/17 CS 686: Big Data 29



§ This approach is fairly intuitive: we basically need to 
be able to confirm with a majority of generals

§ Each round of messages helps us build confidence in 
the decision

§ The problem is, communication is expensive and 
certainly not guaranteed to work

§ At the end of the day, we still can only retreat once 
we know that a traitor exists

Detecting Traitors

9/26/17 CS 686: Big Data 30



§ Byzantine fault tolerance is often overlooked
§ Our computers certainly aren’t people, and they aren’t 

traitors!

§ Think about all the events Google/Amazon/Facebook 
process each day
§ A one in a billion event doesn’t seem so rare anymore

§ NASA, Boeing, Airbus, SpaceX all have to think about 
Byzantine failures a lot

Great, but who cares?

9/26/17 CS 686: Big Data 31



Stuck at ½ 

9/26/17 CS 686: Big Data 32

Driscoll et al., Byzantine Fault Tolerance, from Theory to Reality 



Schrödinger’s CRC (CCITT-8 CRC)

9/26/17 CS 686: Big Data 33

Driscoll et al., Byzantine Fault Tolerance, from Theory to Reality 



Detecting Faults (1/3)

9/26/17 CS 686: Big Data 34

Node B is: (a) correct, (b) detectably faulty, and (c) 
detectably ignorant

Haeberlen et al., The Case for Byzantine Fault Detection



Detecting Faults (2/3)

9/26/17 CS 686: Big Data 35

Node E stores an object for client D (1) and then tries to 
hide it from client B (2)

Haeberlen et al., The Case for Byzantine Fault Detection



Detecting Faults (3/3)

9/26/17 CS 686: Big Data 36

The two clients broadcast authenticators they have obtained from E (3). Later, A audits 
and exposes E (4). Finally, node A broadcasts its evidence against E, so the other nodes 
can expose E as well (5).

Haeberlen et al., The Case for Byzantine Fault Detection



§ One of the most common methods for dealing with 
Byzantine failures in hardware is redundancy

§ Submit the inputs to two identical components

§ Make sure the outputs are the same

§ Planes, space shuttles, etc.
§ The downside: this is expensive!

Detecting Faults: Hardware

9/26/17 CS 686: Big Data 37



§ Cryptocurrency systems such as Bitcoin have to deal 
with attacks from both sides:
§ Byzantine failures can occur on the wide variety of 

hardware/software participating in the network
§ There is money at stake, so subverting the system has 

obvious benefits

§ Proof-of-work schemes help verify goodwill
§ I’ll expend some computational resources to prove I’m 

legitimate

Preventing Faults

9/26/17 CS 686: Big Data 38


