CS 686: Special Topics in Big Data

Byzantine Fault Tolerance

Lecture 13

Looking Ahead

= This week
= Wrapping up consistency
= Paper 3
= Next week
= Big data programming models
= MapReduce
= Analysis Methods

= Coming up
= Streaming analysis
= Project deadline (10/13)

9/26/17 CS 686: Big Data

Today's Agenda

= Spanner
= Chubby
= Two Generals Problem

= Byzantine Generals Problem

9/26/17 CS 686: Big Data

Today's Agenda

= Spanner
= Chubby
= Two Generals Problem

= Byzantine Generals Problem

9/26/17 CS 686: Big Data

Spanner

9/26/17

Our paper this week is:
Spanner: Google's Globally-Distributed Database

Moves to a more relational-style data model rather
than key-value, wide column, or documents

Also provides stronger consistency guarantees
You'll be hearing about Paxos, 2PC

CS 686: Big Data

While You Read

= What are the trade-offs being made?

= What are the use cases?

= Would some applications be better or worse with
Spanner?

= What parts were difficult / confusing?

9/26/17 CS 686: Big Data

Today's Agenda

= Spanner
= Chubby
= Two Generals Problem

= Byzantine Generals Problem

9/26/17 CS 686: Big Data

“Chubby is intended to operate within a single company, and so
malicious denial-of-service attacks against it are rare. However,
mistakes, misunderstandings, and the differing expectations of our
developers lead to effects that are similar to attacks.”

-- Mike Burrows,
Google, Inc.,
The Chubby lock service for loosely-coupled distributed systems

9/26/17 CS 686: Big Data

Chubby

9/26/17

Chubby is used to coordinate between components
at Google

Locking, name services, config store

Partially inspired by the VMS operating system

General purpose, global lock service

Provides coarse-grained locking capabilities and
simple storage facilities

Based on a file system model

CS 686: Big Data

Overview

9/26/17

T 5 servers of a Chubby cell
client ' chubby T

application: library \Q

master

application. library

1

client processes

client Echubby/@ :

CS 686: Big Data 10

File System Interface

= [Is/foo/wombat/pouch
" |s -"lock service’

= foo — the chubby cell, or instance of the system
= Found via DNS lookup

= wombat/pouch - directory and file name

= Files are just arrays of bytes

9/26/17 CS 686: Big Data

11

Abusive Clients

As mentioned, incorrectly using Chubby is similar to
an attack

Initially, the system had no storage quotas
Not intended for a data store

Used for one anyway... 1.5 MB file rewritten for every
client action

Publish/subscribe

Can be used to publish changes, but not the intended
use case

9/26/17 CS 686: Big Data

12

Lessons Learned

Developers rarely consider availability

Chubby outages have caused cascading effects!

Be careful with API design expectations

The system provides an event notification when a
master failover occurs

Should help developers know that they need to verify
the most recent actions

Instead, most applications decided to just crash

Developers want to use their own favorite language

9/26/17 CS 686: Big Data 13

Today's Agenda

= Spanner
= Chubby
= Two Generals Problem

= Byzantine Generals Problem

9/26/17 CS 686: Big Data

14

Failures

9/26/17

We've spent some time discussing failure scenarios
In distributed systems

Sometimes it's difficult to know what even counts as a
failure

What are the weaknesses of our DFS's heartbeat
scheme?

We have another type of failures to consider, though:

Byzantine failures

CS 686: Big Data 15

Byzantine Failures

9/26/17

Any fault presenting different symptoms to different
observers

A machine with failing RAM may happily produce
corrupted files/messages

Cosmic radiation or faulty hardware can cause bit flips
Multiple nodes might think they are the coordinator

Digital vs. analog

Bits stuck at 2 instead of O or 1

CS 686: Big Data 16

Two Generals Problem

9/26/17

Suppose two armies are preparing to attack a
heavily-fortified enemy base

If both armies march, then the attack will be a
success

If only one marches, they will be defeated

The armies are geographically separated and have
an unreliable communication medium (messengers)

How do we solve this problem?

CS 686: Big Data 17

Two Generals Problem

Note: no army gets to have dragons

9/26/17 CS 686: Big Data

@

18

Acknowledgment

One approach is to acknowledge the order to attack
"We shall attack at dawn on September 25!"

“Confirmed: attack at dawn on September 25"

Of course, then we'd need to acknowledge the
acknowledgment

Etc.

Proven to be unsolvable

9/26/17 CS 686: Big Data 19

Reducing Uncertainty

9/26/17

Another approach would be to continue to send
acknowledgments

Each increases your confidence in the attack time

This wastes resources (dead messengers)

We could monitor message throughput

Seqguence numbers let us judge the reliability of the
communications channel

How many messages get lost on average?

CS 686: Big Data

20

Further Complications

9/26/17

We haven't considered the issue of traitorous
messengers

What happens if a messenger is captured by the
enemy and they extract the details of the attack?

How would we know this has happened?

A predetermined protocol could help...

But stronger consistency guarantees reduce the
likelihood of attacking

CS 686: Big Data 21

Applicability

9/26/17

We generally don't concern ourselves with military
strategy when it comes to big data

We also have mobile phones, the internet, etc...

But: one general may be an ATM, and the other your
bank

Hopefully the general that dispenses cash goes ahead
while the one that deducts from your account retreats

CS 686: Big Data 22

Two-Phase Commit

9/26/17

The two-phase commit protocol we discussed
previously is one approach

(note: not a solution)

During a transaction, locks are acquired across all
replicas

Replicas attempt to apply the transaction to their log

Allows roll-back in the case of disagreement

If all replicas agree, the transaction is finalized

CS 686: Big Data 23

Why 2PC Works

We essentially centralize decision making by
Introducing a coordinator node

Not technically a solution

Only when everyone is in agreement, the decision is
broadcast to all participants and the protocol ends

We may be waiting a while to attack

9/26/17 CS 686: Big Data

24

2PC Downsides

Does not guarantee liveness

The protocol may run indefinitely

The approach used by Google in Spanner reduces
the chance we'll get stuck forever, but:

A push toward liveness will reduce our confidence in
the consistency of the algorithm

If we can't trust the messengers, we still have a
problem

9/26/17 CS 686: Big Data

25

Recall: Consistency-Latency Tradeoff

Weak Consistency Strong =—-
Conflict Resolution Distributed Consensus Distributed Transactions
Conflicts are allowed, and Majority of replicas must All replicas must agree on a
may be resolved by client agree on a single consistent consistent value to commit;
applications value roll-back on disagreement
* Dynamo + Chubby Lock Service * F1
L Voldemort y L ZooKeeper P, L Spanner)
Low Latency High se—-

9/26/17 CS 686: Big Data 26

Today's Agenda

= Spanner
= Chubby
= Two Generals Problem

* Byzantine Generals Problem

9/26/17 CS 686: Big Data

27

Byzantine Generals Problem

Several armies encircle a city

The generals have to decide: attack or retreat?

Once again, all the generals must all agree or they will
face their demise

This time we'll assume messages are not lost
The complication: there could be traitorous generals

Described by Lamport, Shostak, and Pease in The
Byzantine Generals Problem

9/26/17 CS 686: Big Data

28

Manipulating the Vote

9/26/17

A general with ill intent could send a vote of ‘yea' to a
certain set of generals and ‘nay’ to others

The paper proves that to be resilient to such an
attack we need:

3m + 1 generals to deal with m traitors

Each general must be connected to the others by at
least 2m + 1 communication paths

m + 1 rounds of messages exchanged

CS 686: Big Data

29

Detecting Traitors

9/26/17

This approach is fairly intuitive: we basically need to
be able to confirm with a majority of generals

Each round of messages helps us build confidence in
the decision

The problem is, communication is expensive and
certainly not guaranteed to work

At the end of the day, we still can only retreat once
we know that a traitor exists

CS 686: Big Data

30

Great, but who cares?

Byzantine fault tolerance is often overlooked

Our computers certainly aren't people, and they aren't
traitors!

Think about all the events Google/Amazon/Facebook
process each day

A one in a billion event doesn't seem so rare anymore

NASA, Boeing, Airbus, SpaceX all have to think about
Byzantine failures a lot

9/26/17 CS 686: Big Data

31

Stuck at -

Vec=3.3v
Logical 1

VOH=2.4V [R B R P R B R R

A

« Note that this
« range is more
s than 1/3 of

* the whole

Logical “1/2” Output

VOL = 0.4 V | | | | | || . | | ‘E L | | | |
Logical 0 : :
. s a .
“1/2” Input

Driscoll et al., Byzantine Fault Tolerance, from Theory to Reality

9/26/17 CS 686: Big Data

32

Schrodinger's CRC (CCITT-8 CRC)

TX 000017%%011%%1110%

Rxa 0000100110011100
RXb 0000110111111101

Driscoll et al., Byzantine Fault Tolerance, from Theory to Reality

9/26/17 CS 686: Big Data

33

Detecting Faults (1/3)

A B C
Ly
o
B>

Node B is: (a) correct, (b) detectably faulty, and (c)
detectably ignorant

Haeberlen et al., The Case for Byzantine Fault Detection

9/26/17 CS 686: Big Data

34

Detecting Faults (2/3)

® ®
B\ ox € B

Put | Sorry

'8 © ® ©
(1) (2)

Node E stores an object for client D (1) and then tries to
hide it from client B (2)

Haeberlen et al., The Case for Byzantine Fault Detection

9/26/17 CS 686: Big Data

35

Detecting Faults (3/3)

The two clients broadcast authenticators they have obtained from E (3). Later, A audits
and exposes E (4). Finally, node A broadcasts its evidence against E, so the other nodes
can expose E as well (5).

Haeberlen et al., The Case for Byzantine Fault Detection

9/26/17 CS 686: Big Data 36

Detecting Faults: Hardware

9/26/17

One of the most common methods for dealing with
Byzantine failures in hardware is redundancy

Submit the inputs to two identical components
Make sure the outputs are the same

Planes, space shuttles, etc.

The downside: this is expensive!

CS 686: Big Data 37

Preventing Faults

Cryptocurrency systems such as Bitcoin have to deal
with attacks from both sides:

Byzantine failures can occur on the wide variety of
hardware/software participating in the network

There is money at stake, so subverting the system has
obvious benefits

Proof-of-work schemes help verify goodwill

I'll expend some computational resources to prove I'm
legitimate

9/26/17 CS 686: Big Data

38

