
Lecture 15

CS 686: Special Topics in Big Data

Proof-of-Work

§ Proof-of-work systems

§ Hashcash

§ Bitcoin

Today’s Agenda

10/2/17 CS 686: Big Data 2

§ Proof-of-work systems

§ Hashcash

§ Bitcoin

Today’s Agenda

10/2/17 CS 686: Big Data 3

§ Proof-of-work (POW) systems help prevent DDoS
attacks and other types of spamming

§ Also useful in cryptocurrencies

§ Give up some of your time (or computational power)
to legitimize an action/object

Proof-of-Work

10/2/17 CS 686: Big Data 4

§ Sea shells were used for thousands of years as legal
tender

§ It takes time to collect shells, carve them, etc.
§ In some cases, the shells were woven into

fabric/leather
§ The currency itself reflected the time it took to be

made, and therefore determined its value

§ Different groups used different shells/designs
§ Only carry value because we say so

Shell Money

10/2/17 CS 686: Big Data 5

§ Completely Automated Public Turing test to
tell Computers and Humans Apart

§ CAPTCHAs are basically proof-of-work systems for
humans

§ So in other words, POW is an annoying, time
consuming task for your computer to do just in the
interest of proving it’s not spamming/DDoSing
§ Luckily computers don’t get annoyed as easily as we

do…

CAPTCHA

10/2/17 CS 686: Big Data 6

§ POW systems use pricing functions to give the
computer a workout

§ A pricing function f has the following requirements:
§ f is moderately easy to compute
§ f is not amenable to amortization: given L values,

m1 … mL, the amortized cost of computing
f(m1) … f(mL) is comparable to computing f(mi)
for any 1 <= i <= L

§ given x and y, it is easy to determine if y = f(x)

Pricing Functions

10/2/17 CS 686: Big Data 7

Dwork C., Naor M. Pricing via Processing or Combatting Junk Mail.

§ A common pricing function is having the computer
perform hash inversions
§ What was the input that produced this hash code?

§ Hash inversions are tough to compute (assuming a
cryptographic hash function)
§ After all, they’re designed to be one way functions
§ Any time we map an infinite set of inputs to a finite set

of numbers (hash space), this is feasible, but still
tough.

Hash Inversions

10/2/17 CS 686: Big Data 8

§ Let’s say our mission is to find a hash with four
leading zeros

§ Start out with what we want to send:
§ “Hello World!”

§ We also need to append a nonce
§ Number used only once
§ We increase this with each hash attempt
§ This will change our output hash each iteration

An Example (1/2)

10/2/17 CS 686: Big Data 9

§ This approach allows us to eventually find our
matching hash, but has a weakness
§ We can precompute the hashes and re-use them later

§ We also need some type of identifier for this
particular transaction
§ Maybe a centralized service hands out transaction IDs
§ We could use the current time, as long as we can

assume clocks are reasonably synced up

An Example (2/2)

10/2/17 CS 686: Big Data 10

while True:

nonce = nonce + 1

string = message + str(nonce)

hash = sha256(string)

if prefix(hash) == '0000':

Send message with hash
break

Pseudocode – Pricing Function

10/2/17 CS 686: Big Data 11

if sha256(msg.payload) == msg.hash:

Valid… Whew! That was tough!
(You could also verify the
transaction id or timestamp here)

Pseudocode - Verification

10/2/17 CS 686: Big Data 12

§ To change the difficulty, we’ll just adjust the number
of zeros we want

§ Unfortunately, the difficulty won’t increase linearly

§ Approaches:
§ Perform a bitwise comparison rather than string

(allows more precision)
§ Have the sender perform multiple inversions

(maybe message1 + another nonce)

Varying the Difficulty

10/2/17 CS 686: Big Data 13

1. Challenge-response

2. Solution verification

Proof-of-Work Variants

10/2/17 CS 686: Big Data 14

§ Interactive link between sender and receiver
§ Receiver chooses the challenge

§ Can adapt the challenge based on its own load or remote capabilities

§ After completing the challenge, the service can be accessed by
the sender

Challenge-Response

10/2/17 CS 686: Big Data 15

Figure Credit: Fabien Coelho

§ In this case, we already know what the challenge is in
advance
§ Compute it locally and send the message

§ Receiver needs to verify the message and then process it
§ Better for one-time communication

Solution Verification

10/2/17 CS 686: Big Data 16

Figure Credit: Fabien Coelho

§ Hardware improvements in this space have
traditionally been less rapid
§ Helps us avoid reconfiguring the difficulty frequently

§ This could be a memory-intensive algorithm

§ Another approach is requesting tokens from remote
servers
§ Here the work is ”tough” because of latencies rather

than the computation

Other Challenges: I/O

10/2/17 CS 686: Big Data 17

§ Proof-of-work systems

§ Hashcash

§ Bitcoin

Today’s Agenda

10/2/17 CS 686: Big Data 18

§ Adds a new header to emails in an effort to reduce
DDoS/spam
§ Proposed by Dwork and Naor

§ You can install the hashcash command line utility:
$ hashcash -m 'mmalensek@usfca.edu’
$ hashcash stamp:
1:20:170927:mmalensek@usfca.edu::ZeNi+DkIeFrH3aUl:000
0000000000000000000000000000000000000009nfO

§ On the receiving end, all that has to be done is verify
the SHA-1 hash of the header

Hashcash

10/2/17 CS 686: Big Data 19

§ 1:20:170927:mmalensek@usfca.edu::ZeNi+DkIeFrH3aU
l:009nfO

§ ver: Hashcash version

§ bits: Number of zero bits

§ date: The time that the message was sent: YYMMDD

§ resource: Resource data string being transmitted

§ ext: Extension (currently ignored)

§ rand: String of random characters

§ counter: Nonce

Header Fields

10/2/17 CS 686: Big Data 20

§ The sender performs the hash inversion and
prepares the header
§ This takes a little CPU time, but shouldn’t be

noticeable

§ Adds the header to the email message

§ Performs the send operation as usual

Sending a Message

10/2/17 CS 686: Big Data 21

§ On the receiving side, all we need to do is compute
the SHA-1 hash of the entire Hashcash header

§ Then we check:
§ That the correct number of leading zeroes is present
§ The provided date is valid

§ This takes an imperceptible amount of time

Receiving a Message

10/2/17 CS 686: Big Data 22

§ Even heavy email users only send a few hundred
emails per day

§ Spammers want to send millions
§ This is going to cost a lot of CPU time

§ Additionally, sending an email with no header or an
incorrect header will incur steep penalties
§ Too many incorrect headers? Ban the IP

§ Best of all, we don’t have to start paying for email

Why Hashcash Works

10/2/17 CS 686: Big Data 23

§ Back in 1992 when Hashcash was invented, we didn’t
have such a huge variety of computing hardware
§ Smartphones, tablets, refrigerators, etc.
§ This makes coming up with the right difficulty for the

challenge… difficult.

§ The power of computing hardware isn’t distributed
uniformly across the Earth

§ Hash inversions are amenable to parallelism and
custom hardware

Why it Doesn’t Work (1/2)

10/2/17 CS 686: Big Data 24

§ Spammers could adopt similar hardware to that of
Bitcoin miners
§ GPUs, ASICs
§ Depends on cost vs. benefit
§ Related: cloud instances. Computing is so cheap!

§ Since email is decentralized, you can’t force
everyone to use this new standard
§ Would actually be easier nowadays (get Google and

Microsoft on board, and you’re just about done)

Why it Doesn’t Work (2/2)

10/2/17 CS 686: Big Data 25

§ Proof-of-work systems

§ Hashcash

§ Bitcoin

Today’s Agenda

10/2/17 CS 686: Big Data 26

Bitcoin Value, Sep 27, 2017

10/2/17 CS 686: Big Data 27

§ 1 BTC = 4,090.75 USD

§ 273,158 transactions per day

§ ~17m bitcoins in circulation

§ See: http://blockchain.info

As of Now

10/2/17 CS 686: Big Data 28

§ The Bitcoin blockchain is a decentralized database
of Bitcoin transactions

§ Each block in the chain includes the hash of the
previous block

§ Starts with the genesis block

§ When a transaction occurs, it is added to the current
block and will be verified by miners

Blockchain

10/2/17 CS 686: Big Data 29

§ A block is a list of transactions with some metadata

§ Magic number (4 bytes) = 0xD9B4BEF9

§ Block size (4 bytes)

§ Block header

§ Transaction counter

§ Transaction data

Blocks

10/2/17 CS 686: Big Data 30

§ Version

§ Hash of the previous block
§ This makes tampering with the chain difficult

§ Current hash of the transactions in the block

§ Timestamp (last update)

§ Difficulty

§ Nonce

Block Headers

10/2/17 CS 686: Big Data 31

§ As we’ve seen, we don’t always agree in our
distributed systems

§ Bitcoin allows forks off of the current block

§ Whichever fork is acknowledged and used by the
most participants becomes the “true” path
§ Longest path wins

§ Transactions that went to a “failed” fork are added
back to the “true” blockchain

Agreement

10/2/17 CS 686: Big Data 32

§ Provisions are in place to ensure transactions are
dealt with in a reasonable amount of time
§ Target: 10 minutes

§ Every 2,016 blocks the system automatically adjusts
its difficulty to hit the 10-minute target

§ From 2014 - 2015 the average number of nonces
tried before a new block could be created increased
from 16 quintillion to 200 quintillion

Reaching an Agreement

10/2/17 CS 686: Big Data 33

§ Bitcoin uses the Hashcash algorithm for a different
purpose: mining coins

§ ”Mining” means verifying a block of transactions
§ Finding the nonce (aka solution)

§ Miners, who are the basis of transaction verification,
are paid in new bitcoins and transaction fees
§ The reward of new bitcoins is halved every 210,000

blocks (~4 years)
§ Monetary supply limited to 21m bitcoins

Mining Bitcoin

10/2/17 CS 686: Big Data 34

§ In bitcoin, the difficulty of the challenge is varied to
keep the network chugging along

§ Once all 21m bitcoins are created, miners will be
rewarded for verification via transaction fees only

§ What is the cost vs. benefit of mining these coins?
§ Electricity vs. the size of the reward

§ Lots of companies now build power-efficient
hardware specifically for mining

Verification

10/2/17 CS 686: Big Data 35

§ As difficulty goes up, the chances of a single miner
verifying a block goes down

§ To combat this, pools of miners formed

§ Pools divide up the work (nonces) among
participants
§ Rewarded with a share of new bitcoins based on how

much work was done
§ Less wasted effort, but less reward

Pooled Mining

10/2/17 CS 686: Big Data 36

§ We are consuming massive amounts of fossil fuels to
produce fake money
§ Production is only hard because we make it so

§ Mining hardware gets bought up and then discarded
once we move to harder hash inversions

§ Some Useful Proof-of-Work systems try to do
beneficial work
§ Finding prime numbers (Primecoin)
§ Protein folding (Curecoin)

Moral Issues

10/2/17 CS 686: Big Data 37

