CS 686: Special Topics in Big Data

Parallel Computing

Lecture 16

Today's Agenda

= Revisiting Jepsen

= Supercomputing

= Message Passing

= Remote Procedure Calls
= Grid Computing

= Distributed Applications

10/11/17 CS 686: Big Data

Today's Agenda

= Revisiting Jepsen

= Supercomputing

= Message Passing

= Remote Procedure Calls
= Grid Computing

= Distributed Applications

10/11/17 CS 686: Big Data

Jepsen: Hazelcast

10/11/17

Related to our recent consistency discussions:
recent article in the Jepsen series on Hazelcast

Hazelcast is a distributed in-memory data grid

Provides shared data structures for coordination and
synchronization

Somewhat like Chubby, ZooKeeper

https://jepsen.io/analyses/hazelcast-3-8-3

CS 686: Big Data

Jepsen: Hazelcast Highlights

Locks that don't lock!
(under a network partition)

Unique IDs that aren't uniquel
500 second waits for the cluster to repair itself

“Finally, almost all uses of lock services for safety in
distributed systems are fundamentally flawed: users
continue to interpret distributed locks as if they were
equivalent to single-node mutexes”

Lock services cannot guarantee exclusion

| hope they never test any of my softwarel!

10/11/17 CS 686: Big Data 5

Today's Agenda

= Revisiting Jepsen

= Supercomputing

= Message Passing

= Remote Procedure Calls
= Grid Computing

= Distributed Applications

10/11/17 CS 686: Big Data

Supercomputing

Pioneered by Seymour Cray, ~1960s

Observed that simply making the CPU much faster
wasn't all that beneficial

Still have to wait for other components to catch up
(Assuming the CPU drives everything)

Instead, Cray designed a system that linked 10
simple computers

Each of the 10 PPUs were responsible for shuffling
data in and out of memory

10/11/17 CS 686: Big Data

CDC 6600

10/11/17 CS 686: Big Data 8

CDC 6600: Tech Specs

60-bit CPU, ten 12-bit I/O processors
3 megaFLOPS
Memory: 128K 60-bit words

Dual video display console

Pretty cool: vector system instead of raster

Storage: 2 MB

Could add magnetic drum storage for expansion!

Yours for ~$10m

10/11/17 CS 686: Big Data

System Design

10/11/17

Original supercomputers used custom hardware to
accelerate performance and allow parallelism

Over time, more off-the-shelf components were
used instead

Huge leaps in performance of commodity CPUs
There are still some advantages over a standard
cluster:

Better interconnects (e.g., Infiniband)
Better integration

CS 686: Big Data 10

Top500

= A list of the top 500 supercomputers is available at:
https://www.top500.0rg

= Current #1: China's Sunway TaihuLight
= 93 PetaFLOPS

= #2 is at 33.9 PFLOPS
= Some of these machines have millions of cores

= See also: Green500
https://www.top500.org/green500/

10/11/17 CS 686: Big Data

11

Beowulf Clusters

10/11/17

Over the years, many big computing tasks have
migrated away from supercomputing platforms

At the same time, supercomputers look more and
more like clusters

"Beowulf” terminology coined in 1994 @ NASA

Grab a bunch of commodity PCs, install software like
OpenMPI, MPICH

"Supercomputer” on the cheap!

CS 686: Big Data

12

Today's Agenda

= Revisiting Jepsen

= Supercomputing

= Message Passing

= Remote Procedure Calls
= Grid Computing

= Distributed Applications

10/11/17 CS 686: Big Data

13

Message Passing

10/11/17

The basic idea behind parallelism is divide and
conquer

To do this, we need to coordinate across processing
units in our cluster via messages

We could use sockets
Who even does that? (Apart from 686 students)

Wrong level of abstraction for high performance
computing (HPC) applications

Every cluster/supercomputer is different

CS 686: Big Data 14

Message Passing Interface

10/11/17

Message passing is the most common paradigm for
programming distributed memory systems

Processors coordinate their activities by sending
messages to each other across the network

Infiniband
Ethernet

Message Passing Interface, or just MPI, gives us
communication primitives to do this

CS 686: Big Data 15

MPI| Standard

10/11/17

There are multiple implementations of MPI that target a
single standard

This allows hardware-specific optimizations: your Cray
supercomputer probably ships with its own special
version of MPI

Knows about the structure of the communication
interconnects

This leads to better performance but also compatibility
iIssues and the usual arguments over the spec

CS 686: Big Data 16

A Simple MPI Program

10/11/17

With MPI, you write one program and then runitin
parallel across multiple PUs

PUs can distinguish between one another by their
ranks (identifiers) — nicer than IP addresses!

Point to point and collective communication are
supported

This approach does not consider network failures

Not great if you're operating at Google's scale!

CS 686: Big Data 17

MPI| Use Cases

MPI is great for coordinating supercomputing/HPC
jobs

Used extensively for atmospheric modeling,
simulations, etc.

Servicing web requests, working with failures...
not so much.

10/11/17 CS 686: Big Data

18

Today's Agenda

= Revisiting Jepsen

= Supercomputing

= Message Passing

= Remote Procedure Calls
= Grid Computing

= Distributed Applications

10/11/17 CS 686: Big Data

19

Remote Procedure Call (RPC)

10/11/17

Simple building block for distributed systems: allow
programs to execute procedures on other machines

Execute your code transparently in another system'’s
address space

Works just like a local procedure call

Awesome! Makes writing a distributed application
almost invisible to the developer

CS 686: Big Data 20

RPC Implementation

Under the hood, RPC uses message passing

Client asks server to execute a method, and waits
for aresponse
Can be either blocking or non-blocking
For non-blocking RPCs, we can use futures to serve
as a placeholder for the result

Unlike a local call, RPCs may fail or incur much more
variable latencies

So, maybe not 100% transparent to the developer...

10/11/17 CS 686: Big Data 21

Remote Method Invocation

A (once) very popular RPC API for Java
Hides even more complexity from the developer

Great for the world of the 90s and early 00s, but has
some drawbacks:

Introduces additional context switching
Difficult to deal with heterogeneity in hardware

Java only! This is the big one

Nowadays we need to communicate across programs
transparently

10/11/17 CS 686: Big Data

22

RPCs in General

RPCs are great for shuffling data around and
synching up distributed components

You can likely achieve better performance and build
a more robust system with simple message passing

The cost? More time spent dealing with low-level
details

How do we deal with concurrency? Going several
calls deep? (Machine A - Machine B - Machine C)

10/11/17 CS 686: Big Data 23

Non-Blocking Event Loop

10/11/17

An alternative approach to using RPC: events
Rather than method calls, just send an event to the
remote machine

Asynchronous by design

Encourages stateless communications

On the server side, process incoming events in an
event loop

node.js

CS 686: Big Data

24

Event Loop Design

10/11/17

One thread (or maybe a few) process incoming
message packets

Does not block waiting for messages

A bit of data came in? Throw it in a buffer and move on

Unwrap the packets, deserialize into an event, and
place the into a work queue

The rest of the threads handle events

Not so great for frequent back-and-forth comm.

CS 686: Big Data

25

REST

Representational state transfer (REST) is closely
related to event-based systems

Generally operates over HTTP endpoints

GET, POST, etc. to URIs

Stateless data transfer

Can use XML, HTML, but JSON is most common

10/11/17 CS 686: Big Data

26

Today's Agenda

= Revisiting Jepsen

= Supercomputing

= Message Passing

= Remote Procedure Calls
= Grid Computing

= Distributed Applications

10/11/17 CS 686: Big Data

27

Grid Computing

Thus far we've focused on communications and data
transfer

Grid computing aims to provide processing
resources at scale

Modeled after the electric grid: use resources as you
need them

Better utilization of hardware between organizations
(for instance, universities)

10/11/17 CS 686: Big Data 28

Hardware

10/11/17

Grids are “super virtual computers” created by
combining a large amount of machines

Connected by commodity/standard networking
hardware such as Ethernet

May span large geographic regions

Like a traditional cluster but span across
organizations

Loosely coupled

CS 686: Big Data

29

Making it Work

This may sound like a recipe for disaster!
Extreme heterogeneity

However, grid middleware helps handle the heavy
lifting for us

When launching an application on a grid, we can
specify type of resources we need

Software libraries, architectures, particular hardware
features, etc.

10/11/17 CS 686: Big Data

30

Volunteer Computing

10/11/17

Volunteer computing is one way to create a grid

Connect to the grid, use it, and also volunteer your
own resources when you don't need them

Leads to better all-around utilization

But, many grid technologies were designed back
when workstations/servers ran 24/7

These days, maybe it's better to shut our PCs down (or
sleep!) when we're not using them

CS 686: Big Data 31

Cycle Scavenging

Cycle scavenging is another form of volunteer
computing

SETI@Home, Folding@Home

Install a special screensaver that looks for
extraterrestrial intelligence while you're making
coffee!

And: “involuntary” cycle scavenging

| should be using the lab machines here to mine
bitcoin, right?!

10/11/17 CS 686: Big Data

32

Cloud Computing

Then cloud computing (*fahem* Amazon) came
along...

Realizes many goals of the grid computing
movement

Also makes many of the same mistakes

Talk to a grid computing researcher sometime

Better: elasticity

Expand and contract your resource pool as needed

10/11/17 CS 686: Big Data 33

Today's Agenda

= Revisiting Jepsen

= Supercomputing

= Message Passing

= Remote Procedure Calls
= Grid Computing

= Distributed Applications

10/11/17 CS 686: Big Data

34

Distributed Applications

S0, we can:
Communicate (pass messages)
Run processes (or procedures) on other machines

Share resources

But this all has a very traditional process centric
view of computing

Why not target an execution model that was
designed to be distributed in the first place?

10/11/17 CS 686: Big Data

35

Bulk Synchronous Parallel

= Computing paradigm that consists of:
= Threads
= Network communication

= Synchronization

= Somewhat of a precursor to MapReduce

10/11/17 CS 686: Big Data

36

Bulk Synchronous Parallel

Processors

Local
Computation

Communication W

corch ______________________
Synchronisation

https://en.wikipedia.org/wiki/File:Bsp.wiki.fig1.svg

10/11/17 CS 686: Big Data

37

MapReduce

Distributed computing paradigm

Two steps:
Map: filter, sort, produce local summaries

Reduce: combine to produce the result(s)
Or, split-apply-combine

Based on the map() and reduce() procedures from
functional computing

10/11/17 CS 686: Big Data

38

MapReduce Innovations

Give the user a constrained framework and make
them fit their problem to it

Parallelism is automatic
Fault tolerance can be taken care of

Development time is reduced

Push computations to the data

(or: don't pull data to the computation)

10/11/17 CS 686: Big Data

39

Thought Experiment: M/R

= What would it take to add basic MapReduce
functionality to your DFS?

= What's the most basic system we could design for
this?

= How about ssh?

10/11/17 CS 686: Big Data

40

