
Lecture 16

CS 686: Special Topics in Big Data

Parallel Computing

§ Revisiting Jepsen

§ Supercomputing

§ Message Passing

§ Remote Procedure Calls

§ Grid Computing

§ Distributed Applications

Today’s Agenda

10/11/17 CS 686: Big Data 2

§ Revisiting Jepsen

§ Supercomputing

§ Message Passing

§ Remote Procedure Calls

§ Grid Computing

§ Distributed Applications

Today’s Agenda

10/11/17 CS 686: Big Data 3

§ Related to our recent consistency discussions:
recent article in the Jepsen series on Hazelcast

§ Hazelcast is a distributed in-memory data grid
§ Provides shared data structures for coordination and

synchronization
§ Somewhat like Chubby, ZooKeeper

§ https://jepsen.io/analyses/hazelcast-3-8-3

Jepsen: Hazelcast

10/11/17 CS 686: Big Data 4

§ Locks that don’t lock!
§ (under a network partition)

§ Unique IDs that aren’t unique!
§ 500 second waits for the cluster to repair itself

§ “Finally, almost all uses of lock services for safety in
distributed systems are fundamentally flawed: users
continue to interpret distributed locks as if they were
equivalent to single-node mutexes”
§ Lock services cannot guarantee exclusion

§ I hope they never test any of my software!

Jepsen: Hazelcast Highlights

10/11/17 CS 686: Big Data 5

§ Revisiting Jepsen

§ Supercomputing

§ Message Passing

§ Remote Procedure Calls

§ Grid Computing

§ Distributed Applications

Today’s Agenda

10/11/17 CS 686: Big Data 6

§ Pioneered by Seymour Cray, ~1960s

§ Observed that simply making the CPU much faster
wasn’t all that beneficial
§ Still have to wait for other components to catch up
§ (Assuming the CPU drives everything)

§ Instead, Cray designed a system that linked 10
simple computers
§ Each of the 10 PPUs were responsible for shuffling

data in and out of memory

Supercomputing

10/11/17 CS 686: Big Data 7

CDC 6600

10/11/17 CS 686: Big Data 8

§ 60-bit CPU, ten 12-bit I/O processors

§ 3 megaFLOPS

§ Memory: 128K 60-bit words

§ Dual video display console
§ Pretty cool: vector system instead of raster

§ Storage: 2 MB
§ Could add magnetic drum storage for expansion!

§ Yours for ~$10m

CDC 6600: Tech Specs

10/11/17 CS 686: Big Data 9

§ Original supercomputers used custom hardware to
accelerate performance and allow parallelism

§ Over time, more off-the-shelf components were
used instead
§ Huge leaps in performance of commodity CPUs

§ There are still some advantages over a standard
cluster:
§ Better interconnects (e.g., Infiniband)
§ Better integration

System Design

10/11/17 CS 686: Big Data 10

§ A list of the top 500 supercomputers is available at:
https://www.top500.org

§ Current #1: China’s Sunway TaihuLight
§ 93 PetaFLOPS

§ #2 is at 33.9 PFLOPS

§ Some of these machines have millions of cores

§ See also: Green500
https://www.top500.org/green500/

Top500

10/11/17 CS 686: Big Data 11

§ Over the years, many big computing tasks have
migrated away from supercomputing platforms
§ At the same time, supercomputers look more and

more like clusters

§ ”Beowulf” terminology coined in 1994 @ NASA

§ Grab a bunch of commodity PCs, install software like
OpenMPI, MPICH
§ ”Supercomputer” on the cheap!

Beowulf Clusters

10/11/17 CS 686: Big Data 12

§ Revisiting Jepsen

§ Supercomputing

§ Message Passing

§ Remote Procedure Calls

§ Grid Computing

§ Distributed Applications

Today’s Agenda

10/11/17 CS 686: Big Data 13

§ The basic idea behind parallelism is divide and
conquer

§ To do this, we need to coordinate across processing
units in our cluster via messages

§ We could use sockets
§ Who even does that? (Apart from 686 students)
§ Wrong level of abstraction for high performance

computing (HPC) applications
§ Every cluster/supercomputer is different

Message Passing

10/11/17 CS 686: Big Data 14

§ Message passing is the most common paradigm for
programming distributed memory systems

§ Processors coordinate their activities by sending
messages to each other across the network
§ Infiniband
§ Ethernet

§ Message Passing Interface, or just MPI, gives us
communication primitives to do this

Message Passing Interface

10/11/17 CS 686: Big Data 15

§ There are multiple implementations of MPI that target a
single standard

§ This allows hardware-specific optimizations: your Cray
supercomputer probably ships with its own special
version of MPI
§ Knows about the structure of the communication

interconnects

§ This leads to better performance but also compatibility
issues and the usual arguments over the spec

MPI Standard

10/11/17 CS 686: Big Data 16

§ With MPI, you write one program and then run it in
parallel across multiple PUs
§ PUs can distinguish between one another by their

ranks (identifiers) – nicer than IP addresses!

§ Point to point and collective communication are
supported

§ This approach does not consider network failures
§ Not great if you’re operating at Google’s scale!

A Simple MPI Program

10/11/17 CS 686: Big Data 17

§ MPI is great for coordinating supercomputing/HPC
jobs

§ Used extensively for atmospheric modeling,
simulations, etc.

§ Servicing web requests, working with failures…
not so much.

MPI Use Cases

10/11/17 CS 686: Big Data 18

§ Revisiting Jepsen

§ Supercomputing

§ Message Passing

§ Remote Procedure Calls

§ Grid Computing

§ Distributed Applications

Today’s Agenda

10/11/17 CS 686: Big Data 19

§ Simple building block for distributed systems: allow
programs to execute procedures on other machines

§ Execute your code transparently in another system’s
address space
§ Works just like a local procedure call

§ Awesome! Makes writing a distributed application
almost invisible to the developer

Remote Procedure Call (RPC)

10/11/17 CS 686: Big Data 20

§ Under the hood, RPC uses message passing

§ Client asks server to execute a method, and waits
for a response
§ Can be either blocking or non-blocking
§ For non-blocking RPCs, we can use futures to serve

as a placeholder for the result

§ Unlike a local call, RPCs may fail or incur much more
variable latencies
§ So, maybe not 100% transparent to the developer…

RPC Implementation

10/11/17 CS 686: Big Data 21

§ A (once) very popular RPC API for Java

§ Hides even more complexity from the developer

§ Great for the world of the 90s and early 00s, but has
some drawbacks:
§ Introduces additional context switching
§ Difficult to deal with heterogeneity in hardware
§ Java only! This is the big one

§ Nowadays we need to communicate across programs
transparently

Remote Method Invocation

10/11/17 CS 686: Big Data 22

§ RPCs are great for shuffling data around and
synching up distributed components

§ You can likely achieve better performance and build
a more robust system with simple message passing
§ The cost? More time spent dealing with low-level

details

§ How do we deal with concurrency? Going several
calls deep? (Machine A à Machine B à Machine C)

RPCs in General

10/11/17 CS 686: Big Data 23

§ An alternative approach to using RPC: events

§ Rather than method calls, just send an event to the
remote machine
§ Asynchronous by design
§ Encourages stateless communications

§ On the server side, process incoming events in an
event loop
§ node.js

Non-Blocking Event Loop

10/11/17 CS 686: Big Data 24

§ One thread (or maybe a few) process incoming
message packets
§ Does not block waiting for messages
§ A bit of data came in? Throw it in a buffer and move on

§ Unwrap the packets, deserialize into an event, and
place the into a work queue

§ The rest of the threads handle events
§ Not so great for frequent back-and-forth comm.

Event Loop Design

10/11/17 CS 686: Big Data 25

§ Representational state transfer (REST) is closely
related to event-based systems

§ Generally operates over HTTP endpoints

§ GET, POST, etc. to URIs

§ Stateless data transfer

§ Can use XML, HTML, but JSON is most common

REST

10/11/17 CS 686: Big Data 26

§ Revisiting Jepsen

§ Supercomputing

§ Message Passing

§ Remote Procedure Calls

§ Grid Computing

§ Distributed Applications

Today’s Agenda

10/11/17 CS 686: Big Data 27

§ Thus far we’ve focused on communications and data
transfer

§ Grid computing aims to provide processing
resources at scale

§ Modeled after the electric grid: use resources as you
need them
§ Better utilization of hardware between organizations

(for instance, universities)

Grid Computing

10/11/17 CS 686: Big Data 28

§ Grids are “super virtual computers” created by
combining a large amount of machines

§ Connected by commodity/standard networking
hardware such as Ethernet
§ May span large geographic regions

§ Like a traditional cluster but span across
organizations

§ Loosely coupled

Hardware

10/11/17 CS 686: Big Data 29

§ This may sound like a recipe for disaster!
§ Extreme heterogeneity

§ However, grid middleware helps handle the heavy
lifting for us

§ When launching an application on a grid, we can
specify type of resources we need
§ Software libraries, architectures, particular hardware

features, etc.

Making it Work

10/11/17 CS 686: Big Data 30

§ Volunteer computing is one way to create a grid

§ Connect to the grid, use it, and also volunteer your
own resources when you don’t need them

§ Leads to better all-around utilization

§ But, many grid technologies were designed back
when workstations/servers ran 24/7
§ These days, maybe it’s better to shut our PCs down (or

sleep!) when we’re not using them

Volunteer Computing

10/11/17 CS 686: Big Data 31

§ Cycle scavenging is another form of volunteer
computing

§ SETI@Home, Folding@Home
§ Install a special screensaver that looks for

extraterrestrial intelligence while you’re making
coffee!

§ And: “involuntary” cycle scavenging
§ I should be using the lab machines here to mine

bitcoin, right?!

Cycle Scavenging

10/11/17 CS 686: Big Data 32

§ Then cloud computing (*ahem* Amazon) came
along…

§ Realizes many goals of the grid computing
movement
§ Also makes many of the same mistakes

§ Talk to a grid computing researcher sometime

§ Better: elasticity
§ Expand and contract your resource pool as needed

Cloud Computing

10/11/17 CS 686: Big Data 33

§ Revisiting Jepsen

§ Supercomputing

§ Message Passing

§ Remote Procedure Calls

§ Grid Computing

§ Distributed Applications

Today’s Agenda

10/11/17 CS 686: Big Data 34

§ So, we can:
§ Communicate (pass messages)
§ Run processes (or procedures) on other machines
§ Share resources

§ But this all has a very traditional process centric
view of computing

§ Why not target an execution model that was
designed to be distributed in the first place?

Distributed Applications

10/11/17 CS 686: Big Data 35

§ Computing paradigm that consists of:
§ Threads
§ Network communication
§ Synchronization

§ Somewhat of a precursor to MapReduce

Bulk Synchronous Parallel

10/11/17 CS 686: Big Data 36

Bulk Synchronous Parallel

10/11/17 CS 686: Big Data 37

https://en.wikipedia.org/wiki/File:Bsp.wiki.fig1.svg

§ Distributed computing paradigm

§ Two steps:
§ Map: filter, sort, produce local summaries
§ Reduce: combine to produce the result(s)

§ Or, split-apply-combine

§ Based on the map() and reduce() procedures from
functional computing

MapReduce

10/11/17 CS 686: Big Data 38

§ Give the user a constrained framework and make
them fit their problem to it
§ Parallelism is automatic
§ Fault tolerance can be taken care of
§ Development time is reduced

§ Push computations to the data
§ (or: don’t pull data to the computation)

MapReduce Innovations

10/11/17 CS 686: Big Data 39

§ What would it take to add basic MapReduce
functionality to your DFS?

§ What’s the most basic system we could design for
this?

§ How about ssh?

Thought Experiment: M/R

10/11/17 CS 686: Big Data 40

