
Lecture 16

CS 686: Special Topics in Big Data

Parallel Computing



§ Revisiting Jepsen

§ Supercomputing

§ Message Passing

§ Remote Procedure Calls

§ Grid Computing

§ Distributed Applications

Today’s Agenda
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§ Related to our recent consistency discussions: 
recent article in the Jepsen series on Hazelcast

§ Hazelcast is a distributed in-memory data grid
§ Provides shared data structures for coordination and 

synchronization
§ Somewhat like Chubby, ZooKeeper

§ https://jepsen.io/analyses/hazelcast-3-8-3

Jepsen: Hazelcast
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§ Locks that don’t lock!
§ (under a network partition)

§ Unique IDs that aren’t unique!
§ 500 second waits for the cluster to repair itself

§ “Finally, almost all uses of lock services for safety in 
distributed systems are fundamentally flawed: users 
continue to interpret distributed locks as if they were 
equivalent to single-node mutexes”
§ Lock services cannot guarantee exclusion

§ I hope they never test any of my software!

Jepsen: Hazelcast Highlights
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§ Pioneered by Seymour Cray, ~1960s

§ Observed that simply making the CPU much faster 
wasn’t all that beneficial
§ Still have to wait for other components to catch up
§ (Assuming the CPU drives everything)

§ Instead, Cray designed a system that linked 10 
simple computers
§ Each of the 10 PPUs were responsible for shuffling 

data in and out of memory

Supercomputing
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CDC 6600
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§ 60-bit CPU, ten 12-bit I/O processors

§ 3 megaFLOPS

§ Memory: 128K 60-bit words

§ Dual video display console
§ Pretty cool: vector system instead of raster

§ Storage: 2 MB
§ Could add magnetic drum storage for expansion!

§ Yours for ~$10m

CDC 6600: Tech Specs
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§ Original supercomputers used custom hardware to 
accelerate performance and allow parallelism

§ Over time, more off-the-shelf components were 
used instead
§ Huge leaps in performance of commodity CPUs

§ There are still some advantages over a standard 
cluster:
§ Better interconnects (e.g., Infiniband)
§ Better integration

System Design
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§ A list of the top 500 supercomputers is available at:
https://www.top500.org

§ Current #1:  China’s Sunway TaihuLight
§ 93 PetaFLOPS

§ #2 is at 33.9 PFLOPS

§ Some of these machines have millions of cores

§ See also: Green500
https://www.top500.org/green500/

Top500
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§ Over the years, many big computing tasks have 
migrated away from supercomputing platforms
§ At the same time, supercomputers look more and 

more like clusters

§ ”Beowulf” terminology coined in 1994 @ NASA

§ Grab a bunch of commodity PCs, install software like 
OpenMPI, MPICH
§ ”Supercomputer” on the cheap!

Beowulf Clusters
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§ The basic idea behind parallelism is divide and 
conquer

§ To do this, we need to coordinate across processing 
units in our cluster via messages

§ We could use sockets
§ Who even does that? (Apart from 686 students)
§ Wrong level of abstraction for high performance 

computing (HPC) applications
§ Every cluster/supercomputer is different

Message Passing
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§ Message passing is the most common paradigm for 
programming distributed memory systems

§ Processors coordinate their activities by sending 
messages to each other across the network
§ Infiniband
§ Ethernet

§ Message Passing Interface, or just MPI, gives us 
communication primitives to do this

Message Passing Interface
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§ There are multiple implementations of MPI that target a 
single standard

§ This allows hardware-specific optimizations: your Cray 
supercomputer probably ships with its own special 
version of MPI
§ Knows about the structure of the communication 

interconnects

§ This leads to better performance but also compatibility 
issues and the usual arguments over the spec

MPI Standard
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§ With MPI, you write one program and then run it in 
parallel across multiple PUs
§ PUs can distinguish between one another by their 

ranks (identifiers) – nicer than IP addresses!

§ Point to point and collective communication are 
supported

§ This approach does not consider network failures
§ Not great if you’re operating at Google’s scale!

A Simple MPI Program
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§ MPI is great for coordinating supercomputing/HPC 
jobs

§ Used extensively for atmospheric modeling, 
simulations, etc.

§ Servicing web requests, working with failures…
not so much.

MPI Use Cases
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§ Simple building block for distributed systems: allow 
programs to execute procedures on other machines

§ Execute your code transparently in another system’s 
address space 
§ Works just like a local procedure call

§ Awesome! Makes writing a distributed application 
almost invisible to the developer

Remote Procedure Call (RPC)
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§ Under the hood, RPC uses message passing

§ Client asks server to execute a method, and waits 
for a response
§ Can be either blocking or non-blocking
§ For non-blocking RPCs, we can use futures to serve 

as a placeholder for the result

§ Unlike a local call, RPCs may fail or incur much more 
variable latencies
§ So, maybe not 100% transparent to the developer…

RPC Implementation
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§ A (once) very popular RPC API for Java

§ Hides even more complexity from the developer

§ Great for the world of the 90s and early 00s, but has 
some drawbacks:
§ Introduces additional context switching
§ Difficult to deal with heterogeneity in hardware
§ Java only! This is the big one

§ Nowadays we need to communicate across programs 
transparently

Remote Method Invocation
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§ RPCs are great for shuffling data around and 
synching up distributed components

§ You can likely achieve better performance and build 
a more robust system with simple message passing
§ The cost? More time spent dealing with low-level 

details

§ How do we deal with concurrency? Going several 
calls deep? (Machine A à Machine B à Machine C)

RPCs in General
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§ An alternative approach to using RPC: events

§ Rather than method calls, just send an event to the 
remote machine
§ Asynchronous by design
§ Encourages stateless communications

§ On the server side, process incoming events in an 
event loop
§ node.js

Non-Blocking Event Loop
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§ One thread (or maybe a few) process incoming 
message packets
§ Does not block waiting for messages
§ A bit of data came in? Throw it in a buffer and move on

§ Unwrap the packets, deserialize into an event, and 
place the into a work queue

§ The rest of the threads handle events
§ Not so great for frequent back-and-forth comm.

Event Loop Design
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§ Representational state transfer (REST) is closely 
related to event-based systems

§ Generally operates over HTTP endpoints

§ GET, POST, etc. to URIs

§ Stateless data transfer

§ Can use XML, HTML, but JSON is most common

REST
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§ Thus far we’ve focused on communications and data 
transfer

§ Grid computing aims to provide processing 
resources at scale

§ Modeled after the electric grid: use resources as you 
need them
§ Better utilization of hardware between organizations 

(for instance, universities)

Grid Computing
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§ Grids are “super virtual computers” created by 
combining a large amount of machines

§ Connected by commodity/standard networking 
hardware such as Ethernet
§ May span large geographic regions

§ Like a traditional cluster but span across 
organizations

§ Loosely coupled

Hardware
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§ This may sound like a recipe for disaster!
§ Extreme heterogeneity

§ However, grid middleware helps handle the heavy 
lifting for us

§ When launching an application on a grid, we can 
specify type of resources we need
§ Software libraries, architectures, particular hardware 

features, etc.

Making it Work
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§ Volunteer computing is one way to create a grid

§ Connect to the grid, use it, and also volunteer your 
own resources when you don’t need them

§ Leads to better all-around utilization

§ But, many grid technologies were designed back 
when workstations/servers ran 24/7
§ These days, maybe it’s better to shut our PCs down (or 

sleep!) when we’re not using them

Volunteer Computing
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§ Cycle scavenging is another form of volunteer 
computing

§ SETI@Home, Folding@Home
§ Install a special screensaver that looks for 

extraterrestrial intelligence while you’re making 
coffee!

§ And: “involuntary” cycle scavenging
§ I should be using the lab machines here to mine 

bitcoin, right?!

Cycle Scavenging
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§ Then cloud computing (*ahem* Amazon) came 
along…

§ Realizes many goals of the grid computing 
movement
§ Also makes many of the same mistakes

§ Talk to a grid computing researcher sometime

§ Better: elasticity
§ Expand and contract your resource pool as needed

Cloud Computing
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§ So, we can:
§ Communicate (pass messages)
§ Run processes (or procedures) on other machines
§ Share resources

§ But this all has a very traditional process centric
view of computing

§ Why not target an execution model that was 
designed to be distributed in the first place?

Distributed Applications

10/11/17 CS 686: Big Data 35



§ Computing paradigm that consists of:
§ Threads
§ Network communication
§ Synchronization

§ Somewhat of a precursor to MapReduce 

Bulk Synchronous Parallel

10/11/17 CS 686: Big Data 36



Bulk Synchronous Parallel
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§ Distributed computing paradigm

§ Two steps:
§ Map: filter, sort, produce local summaries
§ Reduce: combine to produce the result(s)

§ Or, split-apply-combine

§ Based on the map() and reduce() procedures from 
functional computing

MapReduce
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§ Give the user a constrained framework and make 
them fit their problem to it
§ Parallelism is automatic
§ Fault tolerance can be taken care of
§ Development time is reduced

§ Push computations to the data
§ (or: don’t pull data to the computation)

MapReduce Innovations
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§ What would it take to add basic MapReduce 
functionality to your DFS?

§ What’s the most basic system we could design for 
this?

§ How about ssh?

Thought Experiment: M/R
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