**cs 686:** Special Topics in Big Data Managing Geospatial Data

Lecture 19

# Today's Agenda

- Q&A from previous class
- Introduction to spatiotemporal data
- P2 dataset specifics
- Geohash
- Spatial Indexes
- Spatial Queries

# Today's Agenda

#### Q&A from previous class

- Introduction to spatiotemporal data
- P2 dataset specifics
- Geohash
- Spatial Indexes
- Spatial Queries



- Who invented MapReduce?
  - Functional programming languages, way back...
  - Google popularized it
  - Hadoop made it pervasive
- MapReduce 2.0?
  - Hadoop: YARN (Yet Another Resource Negotiatior)
  - Splits up resource management across the cluster
  - Still very much the same old paradigm

# Another Question: Why?

- Google has stated that they no longer use MapReduce
  - But I am sure the paradigm itself (perhaps not the implementation) is alive and well at Google!
- Spark has recently become more popular for these types of analyses
  - Allows in-memory working sets
- Hadoop, like many "cool" technologies, was overprescribed
  - It's still a great (the best?) option for processing gigantic amounts of data in a batch fashion

# **One More Thing**

- Turn in:
  - Design doc
  - Project retro
- **i**!!

# Today's Agenda

- Q&A from previous class
- Introduction to spatiotemporal data
- P2 dataset specifics
- Geohash
- Spatial Indexes
- Spatial Queries

# **Spatiotemporal Data**

- One of the many sources of big data is spatiotemporal datasets
- These datasets are multidimensional:
  - 1. Space (geographic location, x-y coordinate, etc.)
  - 2. Time (could be years, days, even microseconds)
- Besides space and time, a spatiotemporal data point isn't very useful without additional *features*:
  - Name, Age, ID
  - Speed, Weight, Direction

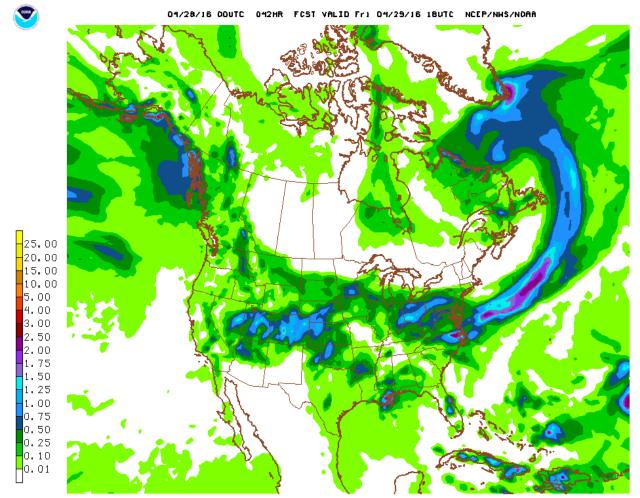
#### **Spatiotemporal Data Sources**

- Geographic information systems
  - Electric usage in a city over time
- Object tracking systems
  - GPS, atomic clocks, speed, direction
- Multiplayer games
  - Player location, attributes
- Networked sensors and radars
  - Temperature sensor with Wi-Fi connectivity
  - Cloud cover or reflectivity readings

# P2 Motivation: NOAA Dataset

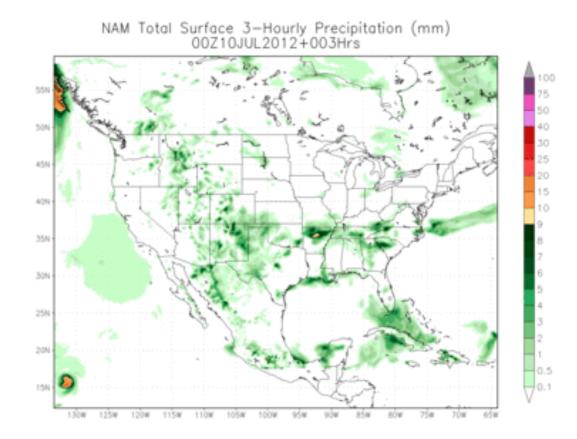
- Sourced from NOAA NAM Project
- Some Dimensions/Features:
  - Geospatial: Latitude, Longitude
  - Time Series: Start Time, End Time
  - Temperature
  - Relative Humidity
  - Wind Speed
  - Snow Depth
- ~2 PB (about 20 billion files)

#### **NAM Precipitation Snapshot**



160429/1800V042 NAM44 042-HR TOTAL PCPN (IN)

#### Animation



#### Learning More



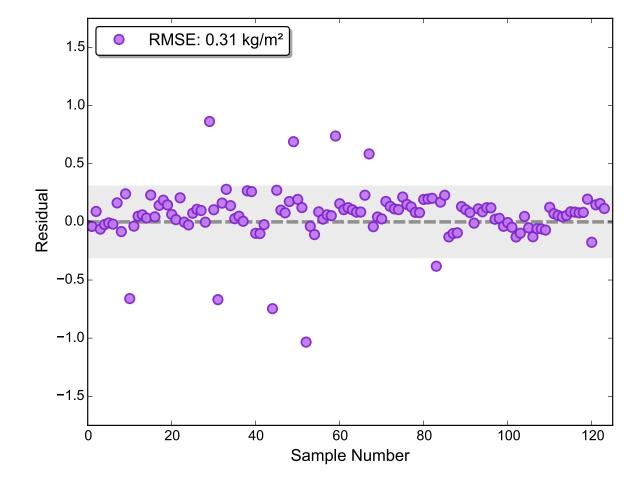
https://www.ncdc.noaa.gov/data-access/modeldata/model-datasets/north-american-mesoscaleforecast-system-nam

# **NAM Dataset Applications**

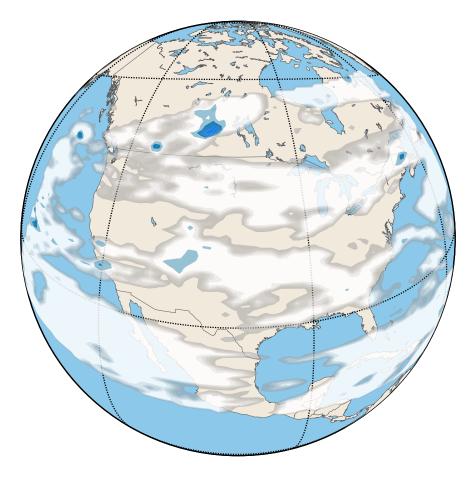
Predicting future weather events or patterns

- Machine learning
- Statistics
- Summarizing Information
  - Visualizations
  - Reports
- Exploring relationships between features
  - How does the temperature influence humidity?
  - How does the location influence precipitation?

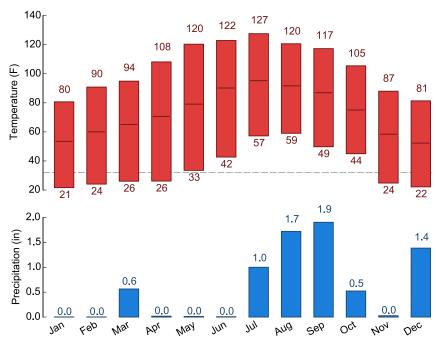
#### **Predicting Rainfall: Wyoming**



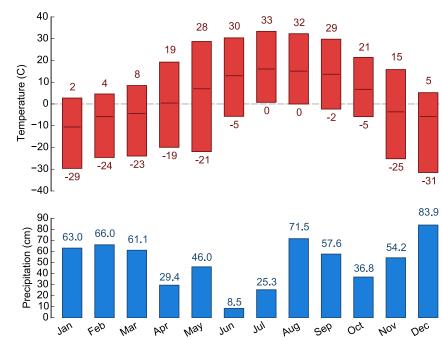
#### **Contour Visualization**



#### **Climate Chart**

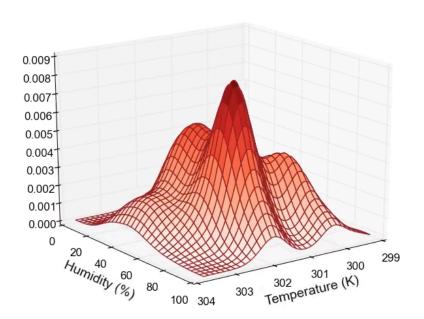


Climate Overview: Phoenix, AZ (US Customary Units)



Climate Overview: Snowmass Village, CO (SI Units)

#### **Relationships: Temp & Humidity**

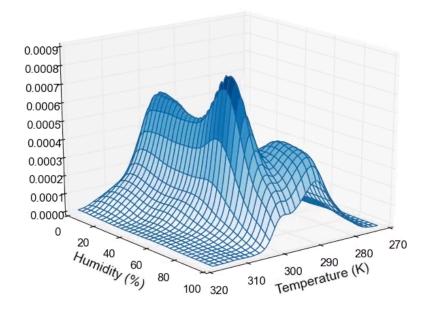


PDF(Temperature 

Humidity): Florida, USA

PDF(Temperature 

Humidity): Continental United States



# **Gathering Insights**

- This dataset contains a wealth of information, but extracting insights from the data is challenging
- Multiple dimensions
- Storage requirements: where do we put all of it?
- Querying the data
  - (knowledge discovery)

# Today's Agenda

- Q&A from previous class
- Introduction to spatiotemporal data
- P2 dataset specifics
- Geohash
- Spatial Indexes
- Spatial Queries

### NAM Dataset Specifics

- The source data is stored in GRIB format
- Can be read and manipulated via the NetCDF library: <u>https://www.unidata.ucar.edu/software/netcdf/</u>
- We'll use a condensed version of the dataset for P2 instead

# **Condensed NAM**

- Tab-delimited features (no fancy formats)
- We'll consider only 2D feature data
  - No elevation information
- Each .tdv file contains a month of readings sampled from the original source
  - nam\_201501.tdv January 2015

#### File Format

- Each line contains a single record
- Each record begins with:
  - 1. Time of reading (UNIX timestamp)
  - 2. Geohash location (more on this later!)
- Then, the remaining features (~56)
  - null if no reading existed

# **Some Interesting Features**

- visibility
- pressure
- vegetation
- lightning
- temperature
- wind speed
- preciptation
- snow cover, snow depth

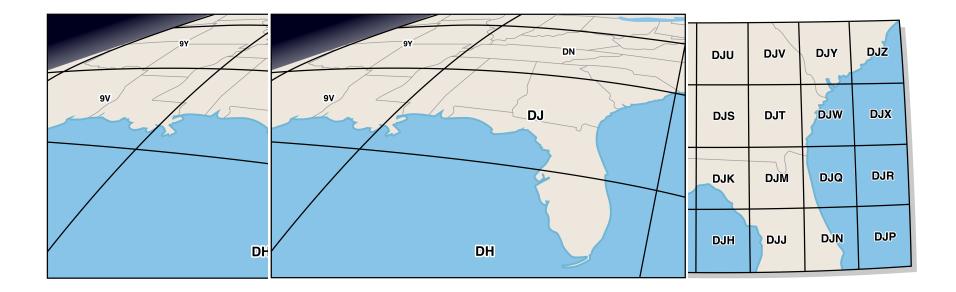
# Today's Agenda

- Q&A from previous class
- Introduction to spatiotemporal data
- P2 dataset specifics
- Geohash
- Spatial Indexes
- Spatial Queries

# **Spatial Queries**

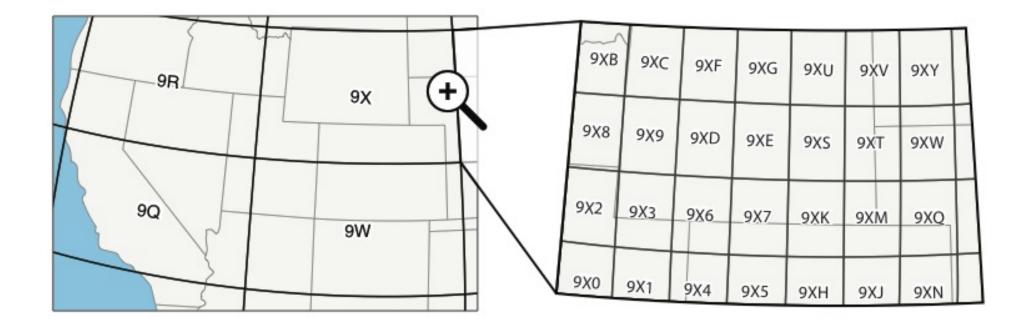
- Querying spatial data is a whole subject in itself
- If I gave you lat-lon pairs in the dataset, you could use those to perform simple spatial queries
  - If lat is >= something && lat <= something else: blah blah blah(); etc();
- A **better** option is to use the Geohash algorithm
  - Maps the earth to base32 strings
  - Defines a spatial **hierarchy** we can exploit

# The Geohash Algorithm (1/2)



#### UNC Charlotte | Big Data to Big Insight: Analytic Queries

#### The Geohash Algorithm (2/2)



#### **Geohash Details**

- We use the *Geohash* algorithm to represent the spatial location associated with our sensor readings
  - Maps 2D spatial locations to 1D strings
  - Precision is determined by string length
- 9Q8YVT1F → Kudlick Classroom
  - Similar string prefixes refer to similar locations
- Want to support range queries? Just match more or less of the string prefix

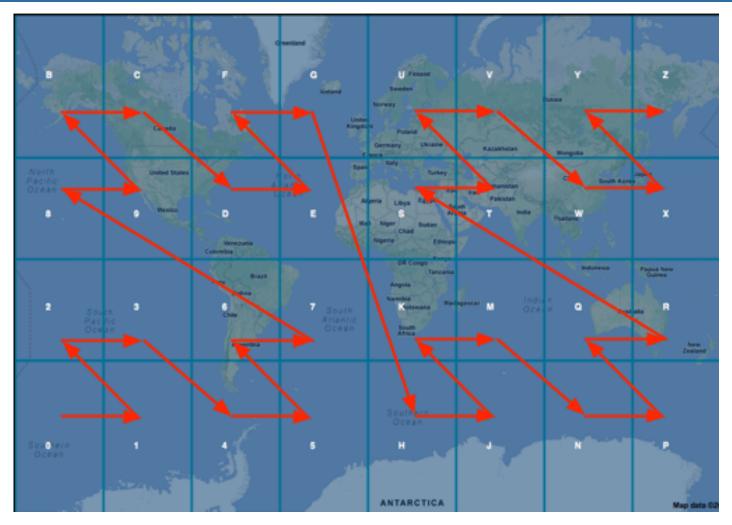
## **Geohash Resolutions**

- Spatiotemporal data is not always evenly distributed
  - Compare the density of New York City and Glenwood Springs, Colorado
- Hash: 9XJQBF
  - 9XJQ = 20x30 km
  - 9X = 600x1000 km
- However, for our dataset, the data IS evenly distributed!
  - Fixed grid

#### **Geohash Implementation**

- Divides the bounding boxes in half with each binary bit added to the string
  - I bit = left or right half of the earth
  - 2 bits = top or bottom half of the left/right half
  - And so on...
- Uses 32 alphanumeric characters (Base 32)
  - 32 characters = 5 bits per character (5 divisions)
  - Omits some letters to avoid forming words

#### **Z-Order Curve**



Source: http://www.bigdatamodeling.org/2013/01/intuitive-geohash.html

#### **Geohash Fun Facts**

- Originally designed to allow users to share short URLs that represent locations
- Similar implementations have been used to identify locations for businesses, government
  - Ireland's proof-of-concept openpostcode can uniquely identify all locations within the UK
- Play with it! <u>http://geohash.gofreerange.com</u>

# For Project 2

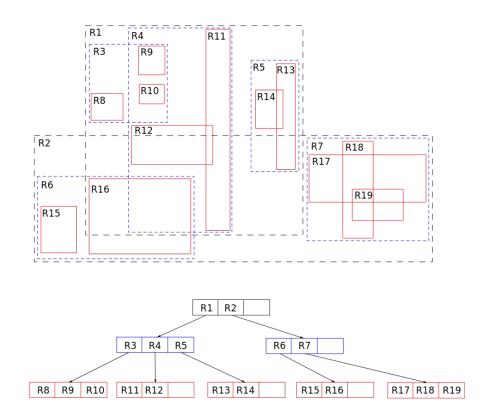
- I'll give you a class that can convert Geohashes to lat-longs, and vice versa
- It's written by me, so um, watch out!
  - (No seriously, it does work!)
- Feel free to use your own library or favorite spatial data structures library for this

# Today's Agenda

- Q&A from previous class
- Introduction to spatiotemporal data
- P2 dataset specifics
- Geohash
- Spatial Indexes
- Spatial Queries

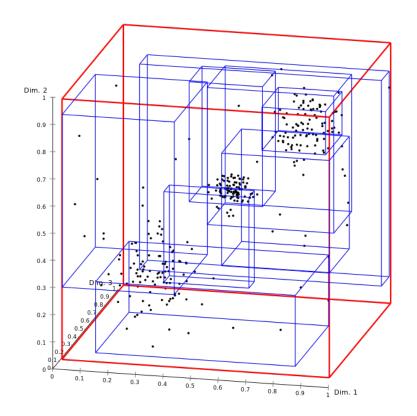
# **Spatial Indexing: R-Trees**

- R-Trees are a widelyused spatial index
- Share many similarities with B-Trees, but support spatial features:
  - Multiple dimensions
  - Intersection, containment queries
  - Nearest neighbor search



## **R-Tree Drawbacks**

- R-Trees can be overwhelmed by extremely large datasets
- Query performance decreases as the number of leaves in the tree expands
  - Too much precision



## Alternative: Geoavailability Grid

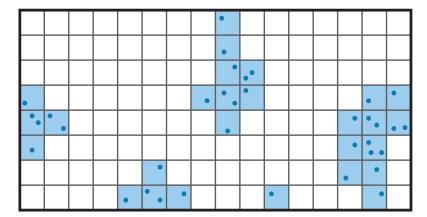
- Bitmap index for spatial data
- Provides a coarse-grained representation of the spatial locations of information in the system
  - Limits the maximum memory consumption
  - May produce false positives
- Eliminates geographic regions from queries that do not contain relevant data

# **Bitmap Indexing**

Also known as: bit arrays or bitsets

- Used in several areas:
  - Relational database management systems
  - Decision support systems
  - Data warehousing
- Just a stream of bits!
  - 01101000 01100101
  - 01101100 01101100
  - 01101111

### **Geoavailability Grid**

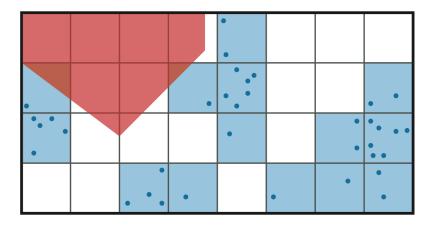


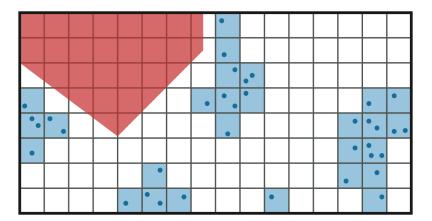
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0

# **Bitmap Storage Requirements**

- The resolution of the geoavailability grid determines the number of bits that must be stored
- Each node in the system maintains a geoavailability grid for each feature type it contains
- Higher precision maps require more bits, but provide greater reductions in search space

## Resolution vs. Search Space Reduction





# **Bitmap Compression**

- Bitmaps are compact, but massive datasets still require large amounts of bits
- The smaller the geoavailability grids, the more data can be held in memory
- Most bitmap implementations use run-length encoding (RLE) to reduce their size

# **Run-Length Encoding**

- RLE is one of the simplest forms of compression
- Consider a binary string: 00000011111110001
- Run-length encoded: 60713011
- Geoavailability grids use Enhanced Word-Aligned Hybrid compression (EWAH)
  - More resilient to data with low sparsity
  - Better compression ratio than standard RLE
  - Increases the speed of bitwise operations

# Today's Agenda

- Q&A from previous class
- Introduction to spatiotemporal data
- P2 dataset specifics
- Geohash
- Spatial Indexes
- Spatial Queries

## **Brute-force** Approach

Submit queries to all nodes, scan over records

- This is what we'll do in P2
- Issues:
  - Wasted processing on nodes with no matches
  - Not scalable
  - High latencies
- A better approach: *decompose* the query and distribute it only to relevant nodes

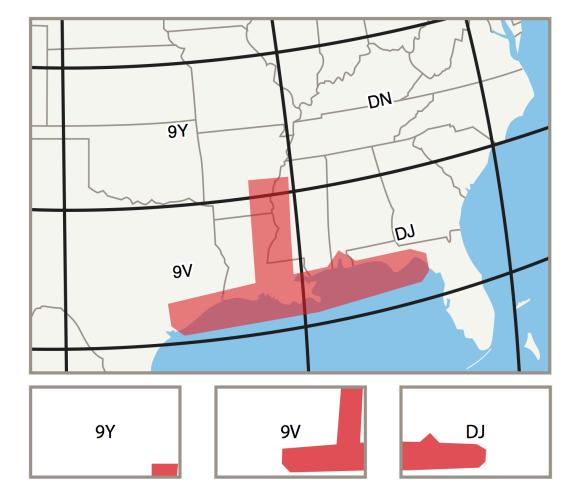
## **Query Evaluation Process**

- 1. User submits a polygon and feature constraints
  - "Give me humidity values for San Francisco in July"
- 2. The query is *decomposed* into multiple *subqueries* based on Geohash boundaries
- 3. Subqueries are distributed to individual storage nodes for processing

# **Representing Polygon Queries**

- Users are provided a scrollable, zoomable map with standard polygon/rectangle drawing tools
- Each component of the input polygon is represented by <latitude, longitude> pairs
- Coordinate pairs are stored by creation order and serialized to a binary format

#### **Spatial Decomposition**



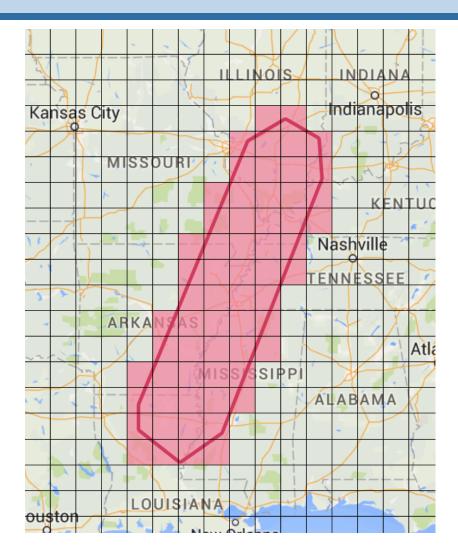
# **Geoavailability Evaluation**

Query polygons are transformed into query bitmaps

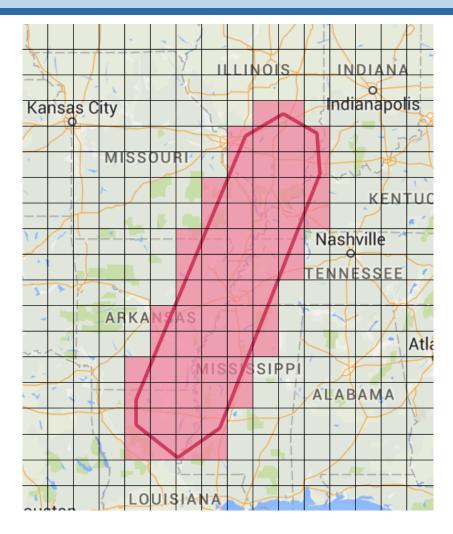
- Uses standard graphics routines
- Can be GPU accelerated
- A bitwise AND is performed between the query bitmap and each geoavailability grid
  - If the result is an empty set, the storage node does not contain relevant data

# Polygon Transformation [1/2]





# Polygon Transformation [2/2]



## **Intersection Queries**

#### Query

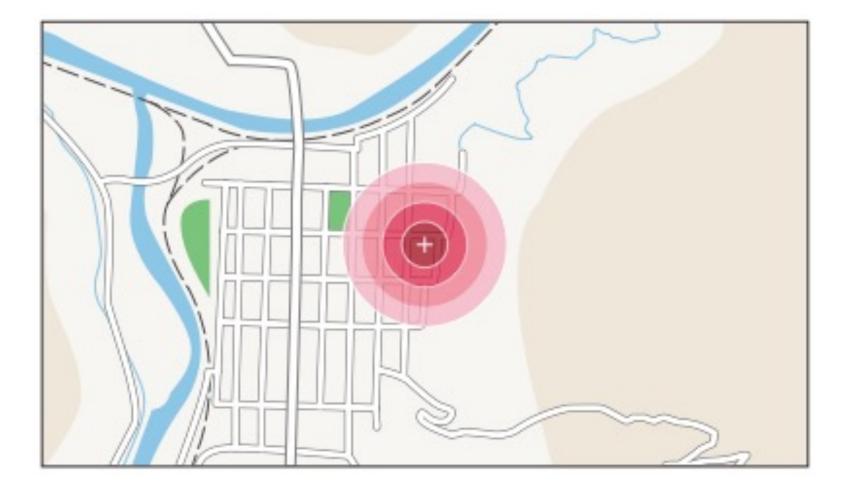
#### Data

**Bitwise AND** 

# **Proximity Queries**

- Retrieves relevant records near a starting coordinate pair
  - "Where's the nearest coffee shop?"
- Successively larger *annuli* are generated around the starting location and evaluated against the geoavailability grid
- The search stops when a match is found, or a specified maximum area has been covered

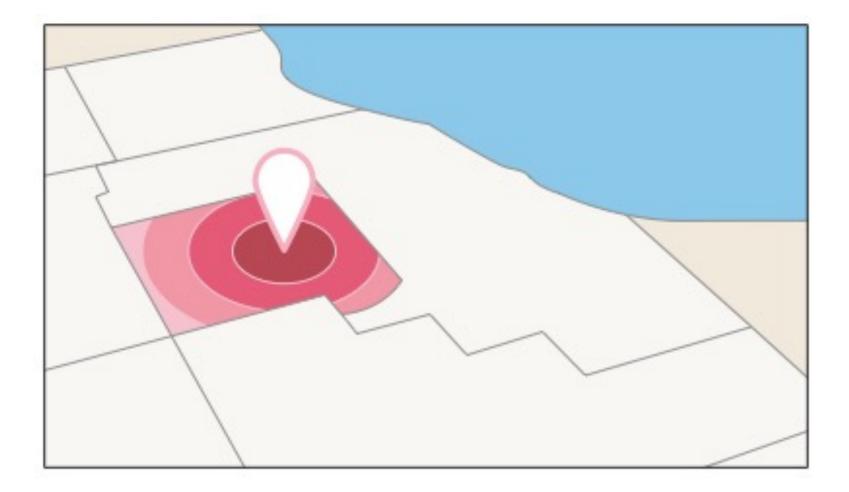
## **Proximity Query Example**



# **Constrained Proximity Queries**

- In some cases, users may wish to constrain a proximity query to a particular region
  - "Find the nearest coffee shop in Santa Clara county"
- Requires constraining geometry
  - US Topologically Integrated Geographic Encoding and Referencing (TIGER) spatial dataset
  - Includes counties, states, administrative boundaries

## **Constrained Proximity Example**



## **Performance Evaluation**

- Geoavailability Grids are based on space efficient, fast data structures: bitmaps
- Query evaluation speeds can be boosted by using GPU acceleration
- The real question: are they faster than R-Trees?

# **Geoavailability Grid Lookup**

| Bitmap Resolution      | Lookup Time (ms) | Standard Deviation (ms) |
|------------------------|------------------|-------------------------|
| 2 <sup>25</sup>        | 0.012            | 0.021                   |
| 2 <sup>30</sup>        | 0.163            | 0.203                   |
| <b>2</b> <sup>35</sup> | 0.723            | 0.289                   |

#### **Query Performance Comparison**

