
Lecture 19

CS 686: Special Topics in Big Data

Managing Geospatial Data



§ Q&A from previous class

§ Introduction to spatiotemporal data

§ P2 dataset specifics

§ Geohash

§ Spatial Indexes

§ Spatial Queries
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§ Who invented MapReduce?
§ Functional programming languages, way back…
§ Google popularized it
§ Hadoop made it pervasive

§ MapReduce 2.0?
§ Hadoop: YARN (Yet Another Resource Negotiatior)
§ Splits up resource management across the cluster
§ Still very much the same old paradigm

Q&A
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§ Google has stated that they no longer use MapReduce
§ But I am sure the paradigm itself (perhaps not the 

implementation) is alive and well at Google!

§ Spark has recently become more popular for these types 
of analyses
§ Allows in-memory working sets

§ Hadoop, like many “cool” technologies, was over-
prescribed
§ It’s still a great (the best?) option for processing gigantic 

amounts of data in a batch fashion

Another Question: Why?
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§ Turn in:
§ Design doc
§ Project retro

§ !!!

One More Thing
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Spatiotemporal Data

§ One of the many sources of big data is 
spatiotemporal datasets

§ These datasets are multidimensional:
1. Space (geographic location, x-y coordinate, etc.)
2. Time (could be years, days, even microseconds)

§ Besides space and time, a spatiotemporal data point 
isn’t very useful without additional features:
§ Name, Age, ID
§ Speed, Weight, Direction



Spatiotemporal Data Sources

§ Geographic information systems
§ Electric usage in a city over time

§ Object tracking systems
§ GPS, atomic clocks, speed, direction

§ Multiplayer games
§ Player location, attributes

§ Networked sensors and radars
§ Temperature sensor with Wi-Fi connectivity
§ Cloud cover or reflectivity readings



P2 Motivation: NOAA Dataset

§ Sourced from NOAA NAM Project
§ Some Dimensions/Features:

§ Geospatial: Latitude, Longitude
§ Time Series: Start Time, End Time
§ Temperature
§ Relative Humidity
§ Wind Speed
§ Snow Depth

§ ~2 PB (about 20 billion files)



NAM Precipitation Snapshot



Animation
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§ See:

https://www.ncdc.noaa.gov/data-access/model-
data/model-datasets/north-american-mesoscale-
forecast-system-nam

Learning More
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NAM Dataset Applications

§ Predicting future weather events or patterns
§ Machine learning
§ Statistics

§ Summarizing Information
§ Visualizations
§ Reports

§ Exploring relationships between features
§ How does the temperature influence humidity?
§ How does the location influence precipitation?



Predicting Rainfall: Wyoming



Contour Visualization



Climate Chart



Relationships: Temp & Humidity



Gathering Insights

§ This dataset contains a wealth of information, but 
extracting insights from the data is challenging

§ Multiple dimensions

§ Storage requirements: where do we put all of it?

§ Querying the data
§ (knowledge discovery)
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§ The source data is stored in GRIB format

§ Can be read and manipulated via the NetCDF library:
https://www.unidata.ucar.edu/software/netcdf/

§ We’ll use a condensed version of the dataset for P2 
instead

NAM Dataset Specifics
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§ Tab-delimited features (no fancy formats)

§ We’ll consider only 2D feature data
§ No elevation information

§ Each .tdv file contains a month of readings sampled
from the original source
§ nam_201501.tdv – January 2015

Condensed NAM
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§ Each line contains a single record

§ Each record begins with:
1. Time of reading (UNIX timestamp)
2. Geohash location (more on this later!)

§ Then, the remaining features (~56)
§ null if no reading existed

File Format
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§ visibility
§ pressure
§ vegetation
§ lightning
§ temperature
§ wind speed
§ preciptation
§ snow cover, snow depth

Some Interesting Features
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§ Querying spatial data is a whole subject in itself

§ If I gave you lat-lon pairs in the dataset, you could 
use those to perform simple spatial queries
§ If lat is >= something && lat <= something else:

blah blah blah();
etc();

§ A better option is to use the Geohash algorithm
§ Maps the earth to base32 strings
§ Defines a spatial hierarchy we can exploit

Spatial Queries
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The Geohash Algorithm (1/2)
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The Geohash Algorithm (2/2)

9Q9Q

9R9R
9X9X

9W9W



Geohash Details

§ We use the Geohash algorithm to represent the 
spatial location associated with our sensor readings
§ Maps 2D spatial locations to 1D strings
§ Precision is determined by string length

§ 9Q8YVT1F è Kudlick Classroom
§ Similar string prefixes refer to similar locations

§ Want to support range queries? Just match more or 
less of the string prefix



Geohash Resolutions

§ Spatiotemporal data is not always evenly distributed
§ Compare the density of New York City and Glenwood 

Springs, Colorado

§ Hash: 9XJQBF
§ 9XJQ = 20x30 km
§ 9X = 600x1000 km

§ However, for our dataset, the data IS evenly 
distributed!
§ Fixed grid



Geohash Implementation

§ Divides the bounding boxes in half with each binary 
bit added to the string
§ 1 bit = left or right half of the earth
§ 2 bits = top or bottom half of the left/right half
§ And so on…

§ Uses 32 alphanumeric characters (Base 32)
§ 32 characters = 5 bits per character (5 divisions)
§ Omits some letters to avoid forming words



Z-Order Curve

Source:	http://www.bigdatamodeling.org/2013/01/intuitive-geohash.html



Geohash Fun Facts 

§ Originally designed to allow users to share short 
URLs that represent locations

§ Similar implementations have been used to identify 
locations for businesses, government
§ Ireland’s proof-of-concept openpostcode can 

uniquely identify all locations within the UK

§ Play with it! http://geohash.gofreerange.com



§ I’ll give you a class that can convert Geohashes to 
lat-longs, and vice versa

§ It’s written by me, so um, watch out!
§ (No seriously, it does work!)

§ Feel free to use your own library or favorite spatial 
data structures library for this

For Project 2
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Spatial Indexing: R-Trees

§ R-Trees are a widely-
used spatial index

§ Share many similarities 
with B-Trees, but support 
spatial features:
§ Multiple dimensions
§ Intersection, 

containment queries
§ Nearest neighbor 

search



R-Tree Drawbacks

§ R-Trees can be 
overwhelmed by 
extremely large datasets

§ Query performance 
decreases as the number 
of leaves in the tree 
expands
§ Too much precision



Alternative: Geoavailability Grid

§ Bitmap index for spatial data

§ Provides a coarse-grained representation of the 
spatial locations of information in the system
§ Limits the maximum memory consumption
§ May produce false positives

§ Eliminates geographic regions from queries that do 
not contain relevant data



Bitmap Indexing

§ Also known as: bit arrays or bitsets
§ Used in several areas:

§ Relational database management systems
§ Decision support systems
§ Data warehousing

§ Just a stream of bits!
§ 01101000 01100101 
§ 01101100 01101100 
§ 01101111 



Geoavailability Grid

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1
1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0



Bitmap Storage Requirements

§ The resolution of the geoavailability grid determines 
the number of bits that must be stored

§ Each node in the system maintains a geoavailability 
grid for each feature type it contains

§ Higher precision maps require more bits, but provide 
greater reductions in search space



Resolution vs. Search Space 
Reduction 



Bitmap Compression

§ Bitmaps are compact, but massive datasets still 
require large amounts of bits

§ The smaller the geoavailability grids, the more data 
can be held in memory

§ Most bitmap implementations use run-length 
encoding (RLE) to reduce their size



Run-Length Encoding

§ RLE is one of the simplest forms of compression

§ Consider a binary string: 00000011111110001

§ Run-length encoded: 60713011

§ Geoavailability grids use Enhanced Word-Aligned 
Hybrid compression (EWAH)
§ More resilient to data with low sparsity
§ Better compression ratio than standard RLE
§ Increases the speed of bitwise operations



§ Q&A from previous class

§ Introduction to spatiotemporal data

§ P2 dataset specifics

§ Geohash

§ Spatial Indexes

§ Spatial Queries

Today’s Agenda

10/26/17 CS 686: Big Data 45



Brute-force Approach

§ Submit queries to all nodes, scan over records
§ This is what we’ll do in P2

§ Issues:
§ Wasted processing on nodes with no matches
§ Not scalable
§ High latencies

§ A better approach: decompose the query and 
distribute it only to relevant nodes



Query Evaluation Process

1. User submits a polygon and feature constraints
§ “Give me humidity values for San Francisco in July”

2. The query is decomposed into multiple subqueries
based on Geohash boundaries

3. Subqueries are distributed to individual storage 
nodes for processing



Representing Polygon Queries

§ Users are provided a scrollable, zoomable map with 
standard polygon/rectangle drawing tools

§ Each component of the input polygon is represented 
by <latitude, longitude> pairs

§ Coordinate pairs are stored by creation order and 
serialized to a binary format



Spatial Decomposition



Geoavailability Evaluation

§ Query polygons are transformed into query bitmaps
§ Uses standard graphics routines
§ Can be GPU accelerated

§ A bitwise AND is performed between the query 
bitmap and each geoavailability grid
§ If the result is an empty set, the storage node does not 

contain relevant data



Polygon Transformation [1/2]



Polygon Transformation [2/2]



Intersection Queries

Query Data



Bitwise AND



Proximity Queries

§ Retrieves relevant records near a starting coordinate 
pair
§ “Where’s the nearest coffee shop?”

§ Successively larger annuli are generated around the 
starting location and evaluated against the 
geoavailability grid

§ The search stops when a match is found, or a 
specified maximum area has been covered



Proximity Query Example



Constrained Proximity Queries

§ In some cases, users may wish to constrain a 
proximity query to a particular region
§ “Find the nearest coffee shop in Santa Clara county”

§ Requires constraining geometry
§ US Topologically Integrated Geographic Encoding 

and Referencing (TIGER) spatial dataset
§ Includes counties, states, administrative boundaries



Constrained Proximity Example



Performance Evaluation

§ Geoavailability Grids are based on space efficient, 
fast data structures: bitmaps

§ Query evaluation speeds can be boosted by using 
GPU acceleration

§ The real question: are they faster than R-Trees?



Geoavailability Grid Lookup

Bitmap Resolution Lookup	Time	(ms) Standard	Deviation	(ms)

225 0.012 0.021

230 0.163 0.203

235 0.723 0.289



Query Performance Comparison


