
Lecture 19

CS 686: Special Topics in Big Data

Managing Geospatial Data

§ Q&A from previous class

§ Introduction to spatiotemporal data

§ P2 dataset specifics

§ Geohash

§ Spatial Indexes

§ Spatial Queries

Today’s Agenda

10/26/17 CS 686: Big Data 2

§ Q&A from previous class

§ Introduction to spatiotemporal data

§ P2 dataset specifics

§ Geohash

§ Spatial Indexes

§ Spatial Queries

Today’s Agenda

10/26/17 CS 686: Big Data 3

§ Who invented MapReduce?
§ Functional programming languages, way back…
§ Google popularized it
§ Hadoop made it pervasive

§ MapReduce 2.0?
§ Hadoop: YARN (Yet Another Resource Negotiatior)
§ Splits up resource management across the cluster
§ Still very much the same old paradigm

Q&A

10/26/17 CS 686: Big Data 4

§ Google has stated that they no longer use MapReduce
§ But I am sure the paradigm itself (perhaps not the

implementation) is alive and well at Google!

§ Spark has recently become more popular for these types
of analyses
§ Allows in-memory working sets

§ Hadoop, like many “cool” technologies, was over-
prescribed
§ It’s still a great (the best?) option for processing gigantic

amounts of data in a batch fashion

Another Question: Why?

10/26/17 CS 686: Big Data 5

§ Turn in:
§ Design doc
§ Project retro

§ !!!

One More Thing

10/26/17 CS 686: Big Data 6

§ Q&A from previous class

§ Introduction to spatiotemporal data

§ P2 dataset specifics

§ Geohash

§ Spatial Indexes

§ Spatial Queries

Today’s Agenda

10/26/17 CS 686: Big Data 7

Spatiotemporal Data

§ One of the many sources of big data is
spatiotemporal datasets

§ These datasets are multidimensional:
1. Space (geographic location, x-y coordinate, etc.)
2. Time (could be years, days, even microseconds)

§ Besides space and time, a spatiotemporal data point
isn’t very useful without additional features:
§ Name, Age, ID
§ Speed, Weight, Direction

Spatiotemporal Data Sources

§ Geographic information systems
§ Electric usage in a city over time

§ Object tracking systems
§ GPS, atomic clocks, speed, direction

§ Multiplayer games
§ Player location, attributes

§ Networked sensors and radars
§ Temperature sensor with Wi-Fi connectivity
§ Cloud cover or reflectivity readings

P2 Motivation: NOAA Dataset

§ Sourced from NOAA NAM Project
§ Some Dimensions/Features:

§ Geospatial: Latitude, Longitude
§ Time Series: Start Time, End Time
§ Temperature
§ Relative Humidity
§ Wind Speed
§ Snow Depth

§ ~2 PB (about 20 billion files)

NAM Precipitation Snapshot

Animation

10/26/17 CS 686: Big Data 12

§ See:

https://www.ncdc.noaa.gov/data-access/model-
data/model-datasets/north-american-mesoscale-
forecast-system-nam

Learning More

10/26/17 CS 686: Big Data 13

NAM Dataset Applications

§ Predicting future weather events or patterns
§ Machine learning
§ Statistics

§ Summarizing Information
§ Visualizations
§ Reports

§ Exploring relationships between features
§ How does the temperature influence humidity?
§ How does the location influence precipitation?

Predicting Rainfall: Wyoming

Contour Visualization

Climate Chart

Relationships: Temp & Humidity

Gathering Insights

§ This dataset contains a wealth of information, but
extracting insights from the data is challenging

§ Multiple dimensions

§ Storage requirements: where do we put all of it?

§ Querying the data
§ (knowledge discovery)

§ Q&A from previous class

§ Introduction to spatiotemporal data

§ P2 dataset specifics

§ Geohash

§ Spatial Indexes

§ Spatial Queries

Today’s Agenda

10/26/17 CS 686: Big Data 20

§ The source data is stored in GRIB format

§ Can be read and manipulated via the NetCDF library:
https://www.unidata.ucar.edu/software/netcdf/

§ We’ll use a condensed version of the dataset for P2
instead

NAM Dataset Specifics

10/26/17 CS 686: Big Data 21

§ Tab-delimited features (no fancy formats)

§ We’ll consider only 2D feature data
§ No elevation information

§ Each .tdv file contains a month of readings sampled
from the original source
§ nam_201501.tdv – January 2015

Condensed NAM

10/26/17 CS 686: Big Data 22

§ Each line contains a single record

§ Each record begins with:
1. Time of reading (UNIX timestamp)
2. Geohash location (more on this later!)

§ Then, the remaining features (~56)
§ null if no reading existed

File Format

10/26/17 CS 686: Big Data 23

§ visibility
§ pressure
§ vegetation
§ lightning
§ temperature
§ wind speed
§ preciptation
§ snow cover, snow depth

Some Interesting Features

10/26/17 CS 686: Big Data 24

§ Q&A from previous class

§ Introduction to spatiotemporal data

§ P2 dataset specifics

§ Geohash

§ Spatial Indexes

§ Spatial Queries

Today’s Agenda

10/26/17 CS 686: Big Data 25

§ Querying spatial data is a whole subject in itself

§ If I gave you lat-lon pairs in the dataset, you could
use those to perform simple spatial queries
§ If lat is >= something && lat <= something else:

blah blah blah();
etc();

§ A better option is to use the Geohash algorithm
§ Maps the earth to base32 strings
§ Defines a spatial hierarchy we can exploit

Spatial Queries

10/26/17 CS 686: Big Data 26

The Geohash Algorithm (1/2)

10/26/17 UNC Charlotte | Big Data to Big Insight: Analytic Queries 27

The Geohash Algorithm (2/2)

9Q9Q

9R9R
9X9X

9W9W

Geohash Details

§ We use the Geohash algorithm to represent the
spatial location associated with our sensor readings
§ Maps 2D spatial locations to 1D strings
§ Precision is determined by string length

§ 9Q8YVT1F è Kudlick Classroom
§ Similar string prefixes refer to similar locations

§ Want to support range queries? Just match more or
less of the string prefix

Geohash Resolutions

§ Spatiotemporal data is not always evenly distributed
§ Compare the density of New York City and Glenwood

Springs, Colorado

§ Hash: 9XJQBF
§ 9XJQ = 20x30 km
§ 9X = 600x1000 km

§ However, for our dataset, the data IS evenly
distributed!
§ Fixed grid

Geohash Implementation

§ Divides the bounding boxes in half with each binary
bit added to the string
§ 1 bit = left or right half of the earth
§ 2 bits = top or bottom half of the left/right half
§ And so on…

§ Uses 32 alphanumeric characters (Base 32)
§ 32 characters = 5 bits per character (5 divisions)
§ Omits some letters to avoid forming words

Z-Order Curve

Source:	http://www.bigdatamodeling.org/2013/01/intuitive-geohash.html

Geohash Fun Facts

§ Originally designed to allow users to share short
URLs that represent locations

§ Similar implementations have been used to identify
locations for businesses, government
§ Ireland’s proof-of-concept openpostcode can

uniquely identify all locations within the UK

§ Play with it! http://geohash.gofreerange.com

§ I’ll give you a class that can convert Geohashes to
lat-longs, and vice versa

§ It’s written by me, so um, watch out!
§ (No seriously, it does work!)

§ Feel free to use your own library or favorite spatial
data structures library for this

For Project 2

10/26/17 CS 686: Big Data 34

§ Q&A from previous class

§ Introduction to spatiotemporal data

§ P2 dataset specifics

§ Geohash

§ Spatial Indexes

§ Spatial Queries

Today’s Agenda

10/26/17 CS 686: Big Data 35

Spatial Indexing: R-Trees

§ R-Trees are a widely-
used spatial index

§ Share many similarities
with B-Trees, but support
spatial features:
§ Multiple dimensions
§ Intersection,

containment queries
§ Nearest neighbor

search

R-Tree Drawbacks

§ R-Trees can be
overwhelmed by
extremely large datasets

§ Query performance
decreases as the number
of leaves in the tree
expands
§ Too much precision

Alternative: Geoavailability Grid

§ Bitmap index for spatial data

§ Provides a coarse-grained representation of the
spatial locations of information in the system
§ Limits the maximum memory consumption
§ May produce false positives

§ Eliminates geographic regions from queries that do
not contain relevant data

Bitmap Indexing

§ Also known as: bit arrays or bitsets
§ Used in several areas:

§ Relational database management systems
§ Decision support systems
§ Data warehousing

§ Just a stream of bits!
§ 01101000 01100101
§ 01101100 01101100
§ 01101111

Geoavailability Grid

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1
1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0

Bitmap Storage Requirements

§ The resolution of the geoavailability grid determines
the number of bits that must be stored

§ Each node in the system maintains a geoavailability
grid for each feature type it contains

§ Higher precision maps require more bits, but provide
greater reductions in search space

Resolution vs. Search Space
Reduction

Bitmap Compression

§ Bitmaps are compact, but massive datasets still
require large amounts of bits

§ The smaller the geoavailability grids, the more data
can be held in memory

§ Most bitmap implementations use run-length
encoding (RLE) to reduce their size

Run-Length Encoding

§ RLE is one of the simplest forms of compression

§ Consider a binary string: 00000011111110001

§ Run-length encoded: 60713011

§ Geoavailability grids use Enhanced Word-Aligned
Hybrid compression (EWAH)
§ More resilient to data with low sparsity
§ Better compression ratio than standard RLE
§ Increases the speed of bitwise operations

§ Q&A from previous class

§ Introduction to spatiotemporal data

§ P2 dataset specifics

§ Geohash

§ Spatial Indexes

§ Spatial Queries

Today’s Agenda

10/26/17 CS 686: Big Data 45

Brute-force Approach

§ Submit queries to all nodes, scan over records
§ This is what we’ll do in P2

§ Issues:
§ Wasted processing on nodes with no matches
§ Not scalable
§ High latencies

§ A better approach: decompose the query and
distribute it only to relevant nodes

Query Evaluation Process

1. User submits a polygon and feature constraints
§ “Give me humidity values for San Francisco in July”

2. The query is decomposed into multiple subqueries
based on Geohash boundaries

3. Subqueries are distributed to individual storage
nodes for processing

Representing Polygon Queries

§ Users are provided a scrollable, zoomable map with
standard polygon/rectangle drawing tools

§ Each component of the input polygon is represented
by <latitude, longitude> pairs

§ Coordinate pairs are stored by creation order and
serialized to a binary format

Spatial Decomposition

Geoavailability Evaluation

§ Query polygons are transformed into query bitmaps
§ Uses standard graphics routines
§ Can be GPU accelerated

§ A bitwise AND is performed between the query
bitmap and each geoavailability grid
§ If the result is an empty set, the storage node does not

contain relevant data

Polygon Transformation [1/2]

Polygon Transformation [2/2]

Intersection Queries

Query Data

Bitwise AND

Proximity Queries

§ Retrieves relevant records near a starting coordinate
pair
§ “Where’s the nearest coffee shop?”

§ Successively larger annuli are generated around the
starting location and evaluated against the
geoavailability grid

§ The search stops when a match is found, or a
specified maximum area has been covered

Proximity Query Example

Constrained Proximity Queries

§ In some cases, users may wish to constrain a
proximity query to a particular region
§ “Find the nearest coffee shop in Santa Clara county”

§ Requires constraining geometry
§ US Topologically Integrated Geographic Encoding

and Referencing (TIGER) spatial dataset
§ Includes counties, states, administrative boundaries

Constrained Proximity Example

Performance Evaluation

§ Geoavailability Grids are based on space efficient,
fast data structures: bitmaps

§ Query evaluation speeds can be boosted by using
GPU acceleration

§ The real question: are they faster than R-Trees?

Geoavailability Grid Lookup

Bitmap Resolution Lookup	Time	(ms) Standard	Deviation	(ms)

225 0.012 0.021

230 0.163 0.203

235 0.723 0.289

Query Performance Comparison

