cs 686: Special Topics in Big Data
Data Sources & Network Design

Lecture 2 8/25/17

Today's Agenda

- Q&A from the previous class
- Defining big data

3/25/17

/25/17

- Dataset sources
- Distributed network design

Q&A From the Previous Class

CS 686: Big Data

- A good book to brush up on distributed systems concepts:
 - Distributed Systems: Principles and Paradigms by Andrew S. Tanenbaum and Maarten van Steen
 - Not required
- We'll focus on relevant conference/journal papers for our readings
 - Two papers are available on the schedule page

Q&A From the Previous Class

- Project 1 will be implemented in Java
 - The majority of modern distributed systems are written in Java, or target the JVM
- Projects 2 and 3 will give you some flexibility in the language department

CS 686: Big Data

Today's Agenda

- Q&A from the previous class
- Defining big data

/25/17

/25/17

Dataset sources

Distributed network design

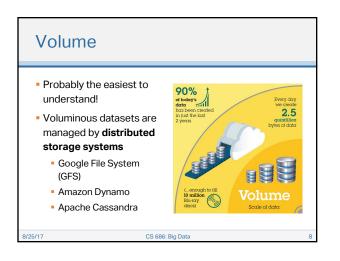
Defining Big Data

 In the last class, we talked about what "big data" really means

CS 686: Big Data

- The main takeaway is: it's hard to define!
- We can view it from different perspectives:
 - Systems, Machine Learning, Data StreamsThe raw size of the data, what format it's in,
 - processing required, etc...
- Let's look at this a little more in depth

<section-header><text><list-item><list-item><list-item><list-item> **Diving a bit deeper, we can divide the field up into four V's:** • O and we we we we we here the lead up into four V's: • O and we we we we we we here the lead up into four V's: • O and we we we we we here the lead up into four V's: • O and we we we were the lead up into four V's: • O and we we were the lead up into four V's: • O and we were were the lead up into four V's: • O and were the lead up into four V's: • O and were the lead up into four V's: • O and were the lead up into four V's: • O and were the lead up into four V's: • O and were the lead up into four V's: • O and were the lead up into four V's: • O and were the lead up into four V's:

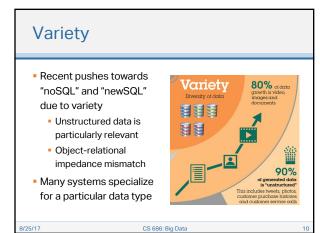


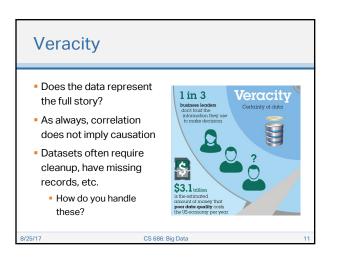
Velocity

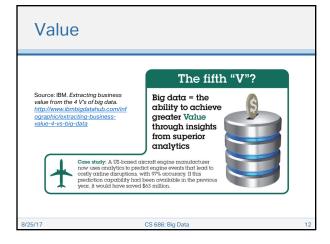
- It's not enough to just be able to store a lot of data
- What happens if data comes in faster than our disks can write it?
- Stream/Event
 Processing Systems
 - Storm, Heron (Twitter)
 Aurora, Samza

/25/17

50,000 (





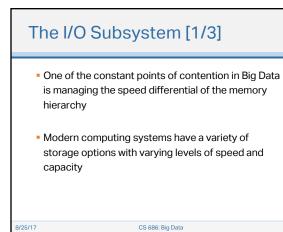


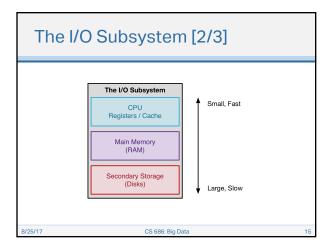
4

...So what makes data "big?"

• There isn't really a cutoff:

- Your data is larger than 1 petabyte, so it's big!
- I have 5 billion files, so that's big, right?
- Big data is more about the **scale**
 - In order to achieve your goals, you have to operate at a large scale
 - You may only have 1 TB of data, but it takes 72 hours to process on a single machine
 - You could have 10 PB of data that you process quickly, but you're limited by the I/O subsystem





The I/O Subsystem [3/3]

- Most big data lives on secondary storage
- The challenge? Getting it off of the disks and into cache, memory, or even the network
- Thought experiment:
 - Memory accesses are measured in nanoseconds
 - Hard disk drive accesses are measured in ms (or in other words, millions of memory accesses)
 - If we scale up, say 1 ns = 1 s, then a single hard disk access takes at least 11.5 days!

8/25/17

CS 686: Big Data

Thinking Beyond Scale

- The value of big datasets lies in the insights they contain
 - How do we extract insights?
 - Queries, iterative refinement
 - Machine learning models
 - Visualizations
- These insights must be timely to be useful
 - Weather predictions
 - Disease spread
 - Sales forecasts (eclipse glasses)

8/25/17

Extracting Insights

 At a basic level, queries allow us to explore relationships between entities in the dataset

CS 686: Big Data

- SELECT Name FROM Students WHERE Course = 'CS686' AND Current_Location != 'USF'
- Visualizations can make interactions between features in the dataset more obvious
- Machine Learning allows us to predict and classify large datasets
 - In the past, many of these models just didn't have enough training samples to adequately capture the subtleties of the dataset

/25/17 CS 686: Big Data

Wrapping Up

- Big Data is all about:
 - 1. Scale: accomplishing tasks that are just too large/intensive to do on one or a few machines
 - 2. Insight: extracting knowledge from the data (or in business terminology, "extracting value")

CS 686: Big Data

Today's Agenda • Q&A from the previous class

- Defining big data
- Dataset sources

5/17

/25/17

Distributed network design

Sources of Big Data

Traditional

Big files, large quantities, archives, documents

CS 686: Big Data

Sensors

/25/17

- Smart devices, radars, satellites, IoT
- The WWW and social media
 - Web crawlers
 - Twitter, Facebook

Data Sources: Traditional

- Movies and photos are being captured at higher resolutions, requiring more storage space
 - Better compression algorithms can mitigate this to some extent, but more people are producing digital media
- Screens are getting better: pixel density on phones and laptops has increased
 - Requires high-resolution graphics/assets
- Using the cloud for storage has become seamless and ubiquitous
 - Ultimately results in more copies of data everywhere

CS 686: Big Data

Data Sources: Logs

- Application/OS logs are frequently one of the biggest data sources at organizations
 - Facebook stores 25 TB of logs per day
- Logging is vital for:

/25/17

/25/17

- Security tracing an intrusion
- Debugging determining when and where problems occur
- History maintaining a record of system activities

CS 686: Big Data

Data Sources: Sensors

- Miniaturization and Internet availability have led to a boom in sensing devices
- We constantly record information about our world
- Why throw this data away when it's so easy to store long-term?

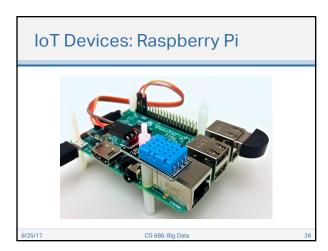
CS 686: Big Data

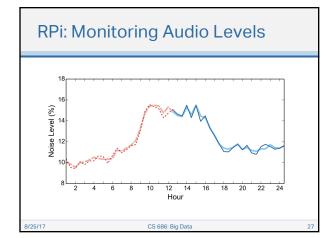
More importantly, what can we learn?

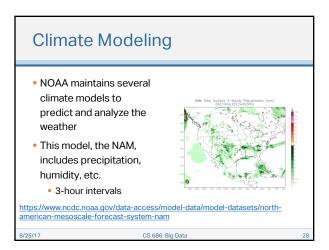
Sensing Devices & Techniques

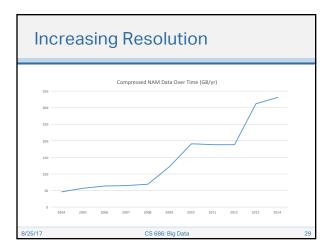
- Weather radars, satellites, and fixed-location observational devices
- Geolocation (GPS)
 - Where your bus was 30 seconds ago
- Live health monitoring, body measurements, activity tracking

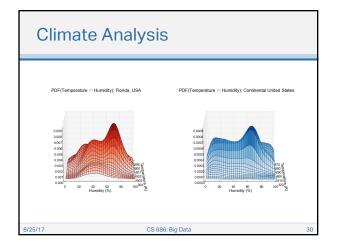
- Click stream data, app usage data
- Autonomous vehicles
- ... And your smartphone











Data Sources: The WWW

- Web search engines were some of the very first big data platforms
 - Index the entire WWW: web crawler
 - If you can monitor changes in the web, you can provide better search results
- The Internet Archive stores not only the current state of the web, but also its history

CS 686: Big Data

Most websites implement some level of tracking

Data Sources: Social Media

- Twitter gives researchers access to raw tweet streams through their API
 - Facilitates sentiment analysis
- Social networks like Facebook form large graphs
 We can learn a lot from someone based on their friends, who they follow, and who follows them

CS 686: Big Data

Many platforms can be scraped for data

Inspiration

/25/17

- A great collection of datasets is available at Academic Torrents: <u>http://academictorrents.com</u>
- Includes a variety of sources:
 - Reddit, gaming, stock markets, movie recommendations
- ...And a lot of different formats / data types

Data Fusion

- One last concept to think about is data fusion
- Some experts claim that when it gets very hot, crime increases
 - Does this have to do with the temperature or is something else at play?
- We can fuse two datasets based on time, space or other common features

CS 686: Big Data

Ties back into the Variety of big data

Today's Agenda Q&A from the previous class Defining big data Dataset sources Distributed network design

Organizing Big Data

/25/17

/25/17

• We have established that dealing with big data is going to require a lot more power than your laptop

CS 686: Big Data

- Google and others pioneered Warehouse Scale Computing in the early 2000s
 - Their key insight: buying the most powerful hardware is not necessarily the best move!
- Building large clusters of commodity hardware allows businesses to scale

Warehouse-Scale Computing

- In this model, we fill data centers with commodity hardware with the best dollar:performance ratio
- Connect the **nodes** with a reasonably-priced interconnect
- Over time, these systems naturally become heterogeneous

25/17

• Even more importantly, the nodes are constantly failing... But that's no big deal.