
Lecture 21

CS 686: Special Topics in Big Data

MapReduce Tips

§ There seems to have been a small problem with how
YARN was configured to schedule jobs
§ Aggressively started reduce tasks before the

mappers were all finished

§ This may have led to some jobs hanging

§ We’ll keep monitoring the situation, but if something
is out of the ordinary definitely let me know!

Cluster Updates

10/30/17 CS 686: Big Data 2

§ The P2 spec has been updated to clarify some minor
points

§ I also added an original (GRIB) file from the NAM that
you can download and play with
§ Read these files with the Java NetCDF library

(also linked from the dataset page)

§ Particularly useful: the toolsUI

§ Also useful: a list of all possible Geohashes

P2 Updates

10/30/17 CS 686: Big Data 3

NetCDF Tools

10/30/17 CS 686: Big Data 4

§ You can add a directory, file, or a pattern to read for
your MapReduce jobs

§ Don’t just give the NAM directory; it has both the full
dataset and the mini dataset
§ Not too big of a deal, but duplicates some information

§ Instead, specify a pattern:
§ /tmp/cs686/nam/nam_2015*
§ The wildcard escape is needed if providing the path

from your terminal

Reading the Dataset

10/30/17 CS 686: Big Data 5

§ It’s a good idea to use the mini dataset for testing
§ This can still take a bit of time to run

§ Another recommendation: create an even smaller dataset
for rapid development
§ hdfs dfs –cat \

/tmp/cs686/nam/nam_mini.tdv \
| head –n 100 | shuf > nam_tiny.tdv

§ Then run your job on just one of the bass nodes (don’t
submit the job on bass01)

Testing Your Jobs

10/30/17 CS 686: Big Data 6

§ You can specify file:///home4/username/file as an
input or output to use non-HDFS paths

Operating on Local Files

10/30/17 CS 686: Big Data 7

§ One thing to remember: hitting Ctrl+C isn’t going to
kill your job

§ Be sure to:
§ yarn application –kill <app_id>

§ Test your applications with the mini dataset before
running across the entire dataset!

Cleaning Up

10/30/17 CS 686: Big Data 8

You can use the LazyOutputFormat to avoid writing
empty files during the reduce phase

import org.apache.hadoop.mapreduce.lib.output.LazyOutputFormat;

. . .

LazyOutputFormat.setOutputFormatClass(job, TextOutputFormat.class);

Being Lazy

10/30/17 CS 686: Big Data 9

Let’s assume you populate a HashMap with values during the reduce phase.
You can then emit a condensed version during cleanup:

@Override
protected void cleanup(Context context)
throws IOException, InterruptedException {

for (Text geohash : hottest.keySet()) {
Double temp = hottest.get(geohash);
context.write(geohash, new DoubleWritable(temp));

}
}

Cleanup() Method

10/30/17 CS 686: Big Data 10

§ Many of the questions want to know more than one
thing
§ For example, both when and where something

happened

§ You can emit text separated by tabs (or whatever
character you like most)

§ Or you can create your own WritableComparable
§ Best practice, but not required

Custom Writables

10/30/17 CS 686: Big Data 11

§ You can also write your own output formats
§ Not too much work – implement some methods

§ Not required for the assignment, but definitely go for
it if you feel it helps!

§ Here’s how you can write your own format that
doesn’t produce empty files:
§ http://whiteycode.blogspot.it/2012/06/hadoop-

removing-empty-output-files.html

Custom Output Formats

10/30/17 CS 686: Big Data 12

