CS 686: Special Topics in Big Data

Summarizing and Sampling Streams

Lecture 25

Today's Schedule

- Project 2 Updates
- An Intro to Sketching Big Data
- Running Statistics
- Running Samples

Today's Schedule

Project 2 Updates

- An Intro to Sketching Big Data
- Running Statistics
- Running Samples

Project 2: Averaging

- A quick tip about reporting feature values: it's often better to report an average rather than a total
 - Both can make sense
 - But an average (mean) is often more flexible
- For example: you may not have data for all days of a month
 - And some months are shorter than others (not by much, but you get the idea!)

Project 2: Readme Files

- Before grading your project, I'll take a look at your readme to decide which parts we'll go over
- Provide lots of detail and explain the patterns/phenomena you're seeing
- The more images, the better!
 - You can take screenshots from geohash.org, weather websites, etc.

Today's Schedule

- Project 2 Updates
- An Intro to Sketching Big Data
- Running Statistics
- Running Samples

Streaming Big Data

- In many cases, data is produced much faster than we can analyze it
- Batch processing systems like MapReduce let us do analysis offline, after the fact
 - Good: studying long-term trends
 - Bad: reacting quickly...
 - Health monitoring, rerouting traffic, etc.
- We can use a stream processing system, but what happens when that can't handle the workload?

Sketching

- Rather than storing/processing everything, we can build sketches of the datasets
- Some information is thrown away...
- ...but we can store a wider breadth of information.
- These approaches have memory and processing benefits
 - Also well-suited to IoT devices, Iow-powered cloud instances, etc

A Few Types of Sketches

Dimensionality reduction

 Perhaps a dimension (feature) in our dataset can be expressed as a function of another dimension

Wavelets

- Used in signal processing
- Does a particular wavelet correlate with the signal we are examining?

Summarization

- Let's assume we have a data feed from NOAA that looks just like our NAM dataset, but in real time
- We want to provide some basic statistics about the weather
 - Highs, lows, averages, etc.
- If we store these in an array (or similar structure) then we can easily find the values we need
 - This will consume a lot of memory (or disk space)

Today's Schedule

- Project 2 Updates
- An Intro to Sketching Big Data
- Running Statistics
- Running Samples

Optimization

- Being the clever big data people we are, we realize that providing the highs/lows doesn't actually require us to store the entire data stream
- We can just check whether the new value we've seen is larger/smaller than what is recorded
- Great! But now we also want to know what the average temperature is...

Gathering More Statistics

- To improve the expressiveness of our weather reports, we also want to gather:
 - Total number of data points
 - Average, variance, and standard deviations
- These statistics provide a high-level overview of the data distributions
 - For instance, if we can assume a normal distribution then this tells us a lot about the data

Online Statistics Collection

- Since new records are constantly streaming into the system, recalculating statistics each time is inefficient
- We also operate in a distributed world: what if multiple nodes in our cluster are receiving data points at the same time?
- Solution: Online statistics collection via Welford's Method

Welford's Method

- Allows statistics about a dataset to be updated incrementally
 - Computation is performed in a single pass (each data point is inspected **once**)
- Each new record incurs a small calculation cost, but avoids re-calculating statistics for the entire dataset
 - Takes about 1 microsecond (0.000001 second) on commodity CPUs

Welford Implementation

We'll maintain:

- the number of observations, n
- the running mean, \bar{x}
- the sum of squares of differences from the current mean, Sn
- As a recurrence relation:

$$\bar{x}_0 = 0, S_0 = 0$$

$$\bar{x}_n = \bar{x}_{n-1} + \frac{x_n - \bar{x}_{n-1}}{n}$$

$$S_n = S_{n-1} + (x_n - \bar{x}_{n-1})(x_n - \bar{x}_n)$$

Or, in Code

```
/** Add a new sample to the running statistics. */
public void put(double sample) {
    n++;
    double delta = sample - this.mean;
    this.mean = this.mean + delta / n;
    this.Sn = this.Sn +
       delta * (sample - this.mean);
    min = Math.min(this.min, sample);
   max = Math.max(this.max, sample);
}
```

Variance / Standard Deviation

$$\bar{x}_0 = 0, S_0 = 0$$

$$\bar{x}_n = \bar{x}_{n-1} + \frac{x_n - \bar{x}_{n-1}}{n}$$

$$S_n = S_{n-1} + (x_n - \bar{x}_{n-1})(x_n - \bar{x}_n)$$

$$\sigma^2 = \frac{S_n}{n} \qquad \qquad \sigma = \sqrt{S_n/n}$$

Additional Statistics

- We can use this information to perform t-tests, check the probability of values given a distribution, and more
- Another big benefit: these statistics can be merged
 - Collect data points on each machine in our cluster, merge them back together!
- Works well with streaming systems and MapReduce

Memory Impact

- We end up maintaining:
 - Min
 - Max
- And:
 - Count (n)
 - Mean
 - Sn

In Java, we're looking at around 50 bytes or so

Pushing it Further

- This approach works well for inspecting a single feature such as temperature
- We can also maintain 2D online statistics:
 - put(temperature, humidity)
- Here we maintain the differences in the sum of squares across the two features
 - Keep a 1D instance of each feature plus this information (just ~8 more bytes)

2D Statistics

- Maintaining the 2D relationships between variables gives us:
 - Correlations
 - Slope and intercept for linear regression
 - Calculation of statistical significance
- These take milliseconds to compute and consume minimal memory

2D Summary Matrix

- After creating our 2D summaries, we can put them in a summary matrix
- Each feature combination ends up being represented twice:
 - Temperature \rightarrow humidity
 - Humidity \rightarrow temperature
- Additionally, each 1D instance contains duplicate information:
 - Number of samples seen
 - Mean value

Optimized 2D Summaries

- Instead of maintaining an entire statistics matrix, place summary instances in a triangular matrix
- Further, remove all duplicate data from the 1D instances
- This creates a new summary structure for any number of dimensions while reducing memory consumption by about 40%!

Data Structure (15 features)

Number of Observations	
Mean	
Sum of Squares	
Min	
Max	Cross-Feature Sum of Squares

Today's Schedule

- Project 2 Updates
- An Intro to Sketching Big Data
- Running Statistics
- Running Samples

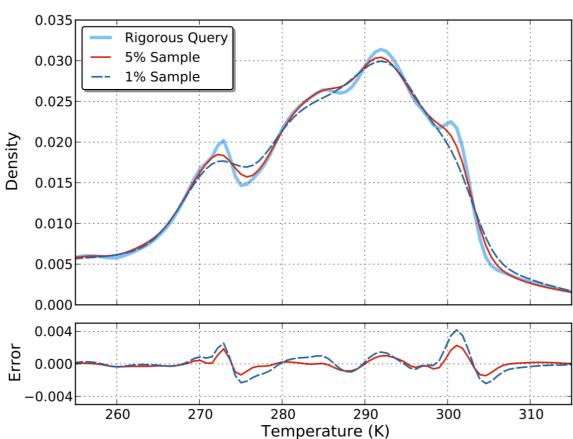
Sampling

- Welford's method is great if we want to throw away everything and just keep some stats
- In many cases, we'd like to actually look at raw data points as well
- Instead of storing everything, let's take a sample

Basic Random Sampling

- Take an array of N elements and a sample fraction F, for example 0.3 (30% sample)
- Randomly select N * F items from the array
- This can be done with or without replacement
 - Putting each selected element back into the array, allowing them to be drawn multiple times
- Great, except once again we need the whole array

Sampling our NOAA Data



Dataset Sampling

11/14/17

CS 686: Big Data

Reservoir Sampling (1/2)

- When the size of the incoming stream is unknown or there are memory constraints, *reservoir sampling* allows creation of representative samples
- Set to a fixed size (array) on creation
 - Limits memory usage
- As data is streamed in, data points are placed randomly into the array
- Over time, the likelihood that incoming data will be stored in the array decreases
 - Ensures long-term representativeness

Reservoir Sampling (2/2)

- Online sampling technique that creates representative random samples when:
 - The number of incoming data points in unknown
 - The total dataset cannot fit in main memory
 - Fixed size (n)
- When data points arrive, they are assigned a random insertion key (k) in the range [0, 1]
 - If k < n / C, where C is the total number of observations, the data point replaces a random entry in the reservoir
 - The probability of replacement decreases over time

Reservoir Sampling Extensions

- Reservoir sampling can be augmented by allowing sample weights to increase the likelihood of certain data points being placed in the array
 - We may place a greater weight on samples from a particular sensor
- Additionally, storing the insertion key when placing data in the reservoir allows merging later
 - To determine which elements go in the merged arrays, just sort by insertion key

Representativeness

- While reservoir sampling provides a replacement for our standard random sampling procedure, it does have weaknesses
- The sample must fit into memory (generally acceptable)
- Outliers or uncommon values will be underrepresented

Stratified Sampling

- Sometimes the outliers are actually more interesting than the common cases!
- Here, we can use stratified sampling to produce a sample that better represents all populations rather than just the majority
- Observe the distribution of data points, and then create sub-reservoirs across the distribution
 - Uncommon data points now have their own reservoir and won't be overpowered by the majority

Motivation: Sensor Data

- Advancements in low-power computing devices enable collection and processing of sensor data
 - Rather doing everything in a central location, *fog nodes* take on part of the storage and processing load
- Fog nodes can maintain a reservoir sample of the observations they record

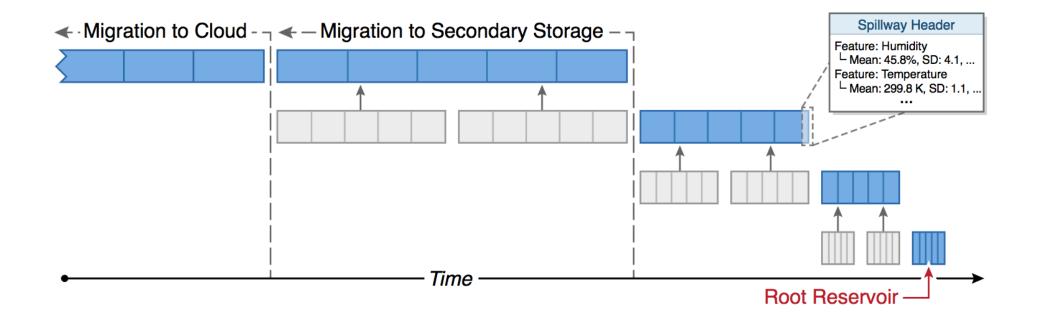
Data Insertion Workflow

- New data points arrive and are sampled by the fog nodes
- 2. Data is retained in main memory and indexed to facilitate queries
- 3. Over time, the data precision is reduced to make space for new observations
- 4. Old data is migrated to secondary storage
- 5. Even older data is migrated to the cloud

Spillways

- Over time, the reservoirs will be updated less frequently
 - Ensures the samples are representative, but eventually the time range of data points gets very large
- Spillways are a hierarchical collection of reservoirs that vary in spatial scope
 - Each reservoir is the same size but is responsible for a different amount of data
 - Spillways merge reservoirs as they age

Spillway Structure



Configuration Options

- Temporal Curve: how many reservoirs are at each step in the hierarchy
 - Previous example: f(x) = 2^x
- Merge Threshold: how many reservoirs should be maintained at each level before a merge can occur
 - Default T = [2, 2, 2, 2] (four-level hierarchy)
 - Keep most recent samples: T = [5, 4, 2, 2]

Facilitating Queries

- Multidimensional data points that chosen to be placed in a reservoir are also added to a red-black tree
 - Better performance than a B-Tree for small datasets
- This allows temporal range queries and operators supported by *interval algebra*
- When a data point is replaced or its spillway is migrated, it is removed from the red-black tree

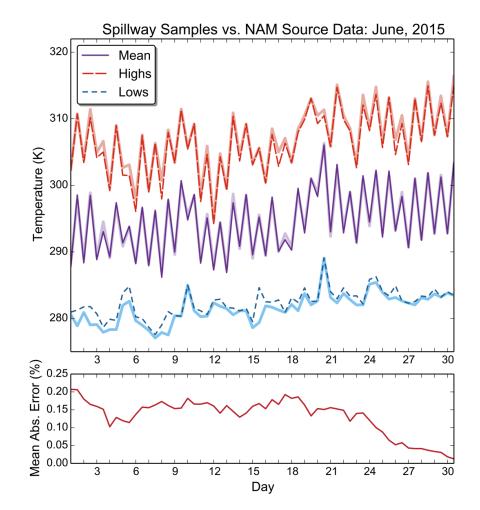
Interval Algebra Operators

Operator	Relationship
A equals B	A B
A before B	A B
A meets B	A B
A overlaps B	A H
A during B	A I B
A starts B	
A finishes B	⊢ A ⊢ — — H B

Evaluating the Spillway

- We can evaluate the Spillway data structure in three ways:
 - 1. Accuracy of the samples compared to actual data
 - 2. Effectiveness of coordination between the fog and cloud (what happens if relevant data is on both)
 - 3. Query throughput handled by the system
- Test setup: 48 fog nodes, 16 cloud nodes, and several EC2 clients

Accuracy Evaluation



CS 686: Big Data

Wrapping Up

- When dealing with big data, think about what you really need to store
 - If two features are highly correlated, it may be better to throw one away and just predict it instead
- Summarization, compression, and sketching are all good ways to make big data more manageable
- As a backup, you can always have a batch system storing full-resolution data

Wrapping Up

Sampling can greatly improve:

- Memory/disk consumption
- Computation time
- Just make sure your sample is representative enough for your particular analysis!