
Lecture 25

CS 686: Special Topics in Big Data

Summarizing and Sampling Streams



§ Project 2 Updates

§ An Intro to Sketching Big Data

§ Running Statistics

§ Running Samples

Today’s Schedule
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§ A quick tip about reporting feature values: it’s often 
better to report an average rather than a total
§ Both can make sense
§ But an average (mean) is often more flexible

§ For example: you may not have data for all days of a 
month
§ And some months are shorter than others (not by 

much, but you get the idea!)

Project 2: Averaging
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§ Before grading your project, I’ll take a look at your 
readme to decide which parts we’ll go over

§ Provide lots of detail and explain the 
patterns/phenomena you’re seeing

§ The more images, the better!
§ You can take screenshots from geohash.org, weather 

websites, etc.

Project 2: Readme Files
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§ In many cases, data is produced much faster than we 
can analyze it

§ Batch processing systems like MapReduce let us do 
analysis offline, after the fact
§ Good: studying long-term trends
§ Bad: reacting quickly…

§ Health monitoring, rerouting traffic, etc.

§ We can use a stream processing system, but what 
happens when that can’t handle the workload?

Streaming Big Data
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§ Rather than storing/processing everything, we can 
build sketches of the datasets 

§ Some information is thrown away…

§ …but we can store a wider breadth of information.

§ These approaches have memory and processing 
benefits
§ Also well-suited to IoT devices, low-powered cloud 

instances, etc

Sketching
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§ Dimensionality reduction
§ Perhaps a dimension (feature) in our dataset can be 

expressed as a function of another dimension

§ Wavelets
§ Used in signal processing
§ Does a particular wavelet correlate with the signal we 

are examining?

§ Summarization

A Few Types of Sketches
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§ Let’s assume we have a data feed from NOAA that 
looks just like our NAM dataset, but in real time

§ We want to provide some basic statistics about the 
weather
§ Highs, lows, averages, etc.

§ If we store these in an array (or similar structure) then 
we can easily find the values we need
§ This will consume a lot of memory (or disk space)

Scenario
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§ Being the clever big data people we are, we realize 
that providing the highs/lows doesn’t actually require 
us to store the entire data stream

§ We can just check whether the new value we’ve seen 
is larger/smaller than what is recorded

§ Great! But now we also want to know what the 
average temperature is…

Optimization
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Gathering More Statistics

§ To improve the expressiveness of our weather 
reports, we also want to gather:
§ Total number of data points
§ Average, variance, and standard deviations

§ These statistics provide a high-level overview of the 
data distributions
§ For instance, if we can assume a normal distribution 

then this tells us a lot about the data

11/14/17 CS 686: Big Data 13



Online Statistics Collection

§ Since new records are constantly streaming into the 
system, recalculating statistics each time is 
inefficient

§ We also operate in a distributed world: what if 
multiple nodes in our cluster are receiving data 
points at the same time?

§ Solution: Online statistics collection via
Welford’s Method
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Welford’s Method

§ Allows statistics about a dataset to be updated 
incrementally
§ Computation is performed in a single pass (each data 

point is inspected once)

§ Each new record incurs a small calculation cost, but 
avoids re-calculating statistics for the entire dataset
§ Takes about 1 microsecond (0.000001 second) on 

commodity CPUs
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§ We’ll maintain:
§ the number of observations, n
§ the running mean, x ̄
§ the sum of squares of differences from the current 

mean, Sn

§ As a recurrence relation:

Welford Implementation
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/** Add a new sample to the running statistics. */
public void put(double sample) { 

n++; 
double delta = sample - this.mean;
this.mean = this.mean + delta / n; 
this.Sn = this.Sn +

delta * (sample - this.mean);

min = Math.min(this.min, sample);
max = Math.max(this.max, sample);

}

Or, in Code
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Variance / Standard Deviation
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§ We can use this information to perform t-tests, 
check the probability of values given a distribution, 
and more

§ Another big benefit: these statistics can be merged
§ Collect data points on each machine in our cluster, 

merge them back together!

§ Works well with streaming systems and MapReduce

Additional Statistics
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§ We end up maintaining:
§ Min
§ Max

§ And:
§ Count (n)
§ Mean
§ Sn

§ In Java, we’re looking at around 50 bytes or so

Memory Impact
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§ This approach works well for inspecting a single 
feature such as temperature

§ We can also maintain 2D online statistics:
§ put(temperature, humidity)

§ Here we maintain the differences in the sum of 
squares across the two features
§ Keep a 1D instance of each feature plus this 

information (just ~8 more bytes)

Pushing it Further
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2D Statistics

§ Maintaining the 2D relationships between variables 
gives us:
§ Correlations
§ Slope and intercept for linear regression
§ Calculation of statistical significance

§ These take milliseconds to compute and consume 
minimal memory
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2D Summary Matrix

§ After creating our 2D summaries, we can put them in a 
summary matrix

§ Each feature combination ends up being represented 
twice:
§ Temperature à humidity
§ Humidity à temperature

§ Additionally, each 1D instance contains duplicate 
information:
§ Number of samples seen
§ Mean value
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Optimized 2D Summaries

§ Instead of maintaining an entire statistics matrix, 
place summary instances in a triangular matrix

§ Further, remove all duplicate data from the 1D 
instances

§ This creates a new summary structure for any 
number of dimensions while reducing memory 
consumption by about 40%!
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Data Structure (15 features)

Cross-Feature Sum	of	Squares

Number	of	Observations

Mean

Sum of	Squares

Min

Max
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§ Welford’s method is great if we want to throw away 
everything and just keep some stats

§ In many cases, we’d like to actually look at raw data 
points as well

§ Instead of storing everything, let’s take a sample

Sampling

11/14/17 CS 686: Big Data 27



§ Take an array of N elements and a sample fraction F, 
for example 0.3 (30% sample)

§ Randomly select N * F items from the array

§ This can be done with or without replacement
§ Putting each selected element back into the array, 

allowing them to be drawn multiple times

§ Great, except once again we need the whole array

Basic Random Sampling
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Sampling our NOAA Data
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Reservoir Sampling (1/2)

§ When the size of the incoming stream is unknown or there 
are memory constraints, reservoir sampling allows 
creation of representative samples

§ Set to a fixed size (array) on creation
§ Limits memory usage

§ As data is streamed in, data points are placed randomly 
into the array

§ Over time, the likelihood that incoming data will be stored 
in the array decreases
§ Ensures long-term representativeness 
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§ Online sampling technique that creates representative 
random samples when:
§ The number of incoming data points in unknown
§ The total dataset cannot fit in main memory

§ Fixed size (n)

§ When data points arrive, they are assigned a random 
insertion key (k) in the range [0, 1]
§ If k < n / C, where C is the total number of observations, the 

data point replaces a random entry in the reservoir
§ The probability of replacement decreases over time

Reservoir Sampling (2/2)
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Reservoir Sampling Extensions

§ Reservoir sampling can be augmented by allowing 
sample weights to increase the likelihood of certain 
data points being placed in the array
§ We may place a greater weight on samples from a 

particular sensor

§ Additionally, storing the insertion key when placing 
data in the reservoir allows merging later
§ To determine which elements go in the merged arrays, 

just sort by insertion key
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§ While reservoir sampling provides a replacement for 
our standard random sampling procedure, it does 
have weaknesses

§ The sample must fit into memory (generally 
acceptable)

§ Outliers or uncommon values will be under-
represented

Representativeness
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§ Sometimes the outliers are actually more interesting 
than the common cases!

§ Here, we can use stratified sampling to produce a 
sample that better represents all populations rather 
than just the majority

§ Observe the distribution of data points, and then 
create sub-reservoirs across the distribution
§ Uncommon data points now have their own reservoir 

and won’t be overpowered by the majority

Stratified Sampling

11/14/17 CS 686: Big Data 34



§ Advancements in low-power computing devices 
enable collection and processing of sensor data
§ Rather doing everything in a central location, fog 

nodes take on part of the storage and processing load

§ Fog nodes can maintain a reservoir sample of the 
observations they record

Motivation: Sensor Data
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1. New data points arrive and are sampled by the fog 
nodes

2. Data is retained in main memory and indexed to 
facilitate queries

3. Over time, the data precision is reduced to make 
space for new observations

4. Old data is migrated to secondary storage

5. Even older data is migrated to the cloud

Data Insertion Workflow
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§ Over time, the reservoirs will be updated less 
frequently
§ Ensures the samples are representative, but 

eventually the time range of data points gets very 
large

§ Spillways are a hierarchical collection of reservoirs 
that vary in spatial scope
§ Each reservoir is the same size but is responsible for a 

different amount of data
§ Spillways merge reservoirs as they age

Spillways
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Spillway Structure
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§ Temporal Curve: how many reservoirs are at each 
step in the hierarchy
§ Previous example: f(x) = 2x

§ Merge Threshold: how many reservoirs should be 
maintained at each level before a merge can occur
§ Default T = [2, 2, 2, 2] (four-level hierarchy)
§ Keep most recent samples: T = [5, 4, 2, 2]

Configuration Options
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§ Multidimensional data points that chosen to be 
placed in a reservoir are also added to a red-black 
tree
§ Better performance than a B-Tree for small datasets

§ This allows temporal range queries and operators 
supported by interval algebra

§ When a data point is replaced or its spillway is 
migrated, it is removed from the red-black tree

Facilitating Queries
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Interval Algebra Operators
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§ We can evaluate the Spillway data structure in three 
ways:

1. Accuracy of the samples compared to actual data
2. Effectiveness of coordination between the fog and 

cloud (what happens if relevant data is on both)
3. Query throughput handled by the system

§ Test setup: 48 fog nodes, 16 cloud nodes, and 
several EC2 clients

Evaluating the Spillway
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Accuracy Evaluation
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§ When dealing with big data, think about what you 
really need to store
§ If two features are highly correlated, it may be better 

to throw one away and just predict it instead

§ Summarization, compression, and sketching are all 
good ways to make big data more manageable

§ As a backup, you can always have a batch system 
storing full-resolution data

Wrapping Up
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§ Sampling can greatly improve:
§ Memory/disk consumption
§ Computation time

§ Just make sure your sample is representative 
enough for your particular analysis!

Wrapping Up
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