
Lecture 25

CS 686: Special Topics in Big Data

Summarizing and Sampling Streams

§ Project 2 Updates

§ An Intro to Sketching Big Data

§ Running Statistics

§ Running Samples

Today’s Schedule

11/14/17 CS 686: Big Data 2

§ Project 2 Updates

§ An Intro to Sketching Big Data

§ Running Statistics

§ Running Samples

Today’s Schedule

11/14/17 CS 686: Big Data 3

§ A quick tip about reporting feature values: it’s often
better to report an average rather than a total
§ Both can make sense
§ But an average (mean) is often more flexible

§ For example: you may not have data for all days of a
month
§ And some months are shorter than others (not by

much, but you get the idea!)

Project 2: Averaging

11/14/17 CS 686: Big Data 4

§ Before grading your project, I’ll take a look at your
readme to decide which parts we’ll go over

§ Provide lots of detail and explain the
patterns/phenomena you’re seeing

§ The more images, the better!
§ You can take screenshots from geohash.org, weather

websites, etc.

Project 2: Readme Files

11/14/17 CS 686: Big Data 5

§ Project 2 Updates

§ An Intro to Sketching Big Data

§ Running Statistics

§ Running Samples

Today’s Schedule

11/14/17 CS 686: Big Data 6

§ In many cases, data is produced much faster than we
can analyze it

§ Batch processing systems like MapReduce let us do
analysis offline, after the fact
§ Good: studying long-term trends
§ Bad: reacting quickly…

§ Health monitoring, rerouting traffic, etc.

§ We can use a stream processing system, but what
happens when that can’t handle the workload?

Streaming Big Data

11/14/17 CS 686: Big Data 7

§ Rather than storing/processing everything, we can
build sketches of the datasets

§ Some information is thrown away…

§ …but we can store a wider breadth of information.

§ These approaches have memory and processing
benefits
§ Also well-suited to IoT devices, low-powered cloud

instances, etc

Sketching

11/14/17 CS 686: Big Data 8

§ Dimensionality reduction
§ Perhaps a dimension (feature) in our dataset can be

expressed as a function of another dimension

§ Wavelets
§ Used in signal processing
§ Does a particular wavelet correlate with the signal we

are examining?

§ Summarization

A Few Types of Sketches

11/14/17 CS 686: Big Data 9

§ Let’s assume we have a data feed from NOAA that
looks just like our NAM dataset, but in real time

§ We want to provide some basic statistics about the
weather
§ Highs, lows, averages, etc.

§ If we store these in an array (or similar structure) then
we can easily find the values we need
§ This will consume a lot of memory (or disk space)

Scenario

11/14/17 CS 686: Big Data 10

§ Project 2 Updates

§ An Intro to Sketching Big Data

§ Running Statistics

§ Running Samples

Today’s Schedule

11/14/17 CS 686: Big Data 11

§ Being the clever big data people we are, we realize
that providing the highs/lows doesn’t actually require
us to store the entire data stream

§ We can just check whether the new value we’ve seen
is larger/smaller than what is recorded

§ Great! But now we also want to know what the
average temperature is…

Optimization

11/14/17 CS 686: Big Data 12

Gathering More Statistics

§ To improve the expressiveness of our weather
reports, we also want to gather:
§ Total number of data points
§ Average, variance, and standard deviations

§ These statistics provide a high-level overview of the
data distributions
§ For instance, if we can assume a normal distribution

then this tells us a lot about the data

11/14/17 CS 686: Big Data 13

Online Statistics Collection

§ Since new records are constantly streaming into the
system, recalculating statistics each time is
inefficient

§ We also operate in a distributed world: what if
multiple nodes in our cluster are receiving data
points at the same time?

§ Solution: Online statistics collection via
Welford’s Method

11/14/17 CS 686: Big Data 14

Welford’s Method

§ Allows statistics about a dataset to be updated
incrementally
§ Computation is performed in a single pass (each data

point is inspected once)

§ Each new record incurs a small calculation cost, but
avoids re-calculating statistics for the entire dataset
§ Takes about 1 microsecond (0.000001 second) on

commodity CPUs

11/14/17 CS 686: Big Data 15

§ We’ll maintain:
§ the number of observations, n
§ the running mean, x ̄
§ the sum of squares of differences from the current

mean, Sn

§ As a recurrence relation:

Welford Implementation

11/14/17 CS 686: Big Data 16

/** Add a new sample to the running statistics. */
public void put(double sample) {

n++;
double delta = sample - this.mean;
this.mean = this.mean + delta / n;
this.Sn = this.Sn +

delta * (sample - this.mean);

min = Math.min(this.min, sample);
max = Math.max(this.max, sample);

}

Or, in Code

11/14/17 CS 686: Big Data 17

Variance / Standard Deviation

11/14/17 CS 686: Big Data 18

§ We can use this information to perform t-tests,
check the probability of values given a distribution,
and more

§ Another big benefit: these statistics can be merged
§ Collect data points on each machine in our cluster,

merge them back together!

§ Works well with streaming systems and MapReduce

Additional Statistics

11/14/17 CS 686: Big Data 19

§ We end up maintaining:
§ Min
§ Max

§ And:
§ Count (n)
§ Mean
§ Sn

§ In Java, we’re looking at around 50 bytes or so

Memory Impact

11/14/17 CS 686: Big Data 20

§ This approach works well for inspecting a single
feature such as temperature

§ We can also maintain 2D online statistics:
§ put(temperature, humidity)

§ Here we maintain the differences in the sum of
squares across the two features
§ Keep a 1D instance of each feature plus this

information (just ~8 more bytes)

Pushing it Further

11/14/17 CS 686: Big Data 21

2D Statistics

§ Maintaining the 2D relationships between variables
gives us:
§ Correlations
§ Slope and intercept for linear regression
§ Calculation of statistical significance

§ These take milliseconds to compute and consume
minimal memory

11/14/17 CS 686: Big Data 22

2D Summary Matrix

§ After creating our 2D summaries, we can put them in a
summary matrix

§ Each feature combination ends up being represented
twice:
§ Temperature à humidity
§ Humidity à temperature

§ Additionally, each 1D instance contains duplicate
information:
§ Number of samples seen
§ Mean value

11/14/17 CS 686: Big Data 23

Optimized 2D Summaries

§ Instead of maintaining an entire statistics matrix,
place summary instances in a triangular matrix

§ Further, remove all duplicate data from the 1D
instances

§ This creates a new summary structure for any
number of dimensions while reducing memory
consumption by about 40%!

11/14/17 CS 686: Big Data 24

Data Structure (15 features)

Cross-Feature Sum	of	Squares

Number	of	Observations

Mean

Sum of	Squares

Min

Max

11/14/17 CS 686: Big Data 25

§ Project 2 Updates

§ An Intro to Sketching Big Data

§ Running Statistics

§ Running Samples

Today’s Schedule

11/14/17 CS 686: Big Data 26

§ Welford’s method is great if we want to throw away
everything and just keep some stats

§ In many cases, we’d like to actually look at raw data
points as well

§ Instead of storing everything, let’s take a sample

Sampling

11/14/17 CS 686: Big Data 27

§ Take an array of N elements and a sample fraction F,
for example 0.3 (30% sample)

§ Randomly select N * F items from the array

§ This can be done with or without replacement
§ Putting each selected element back into the array,

allowing them to be drawn multiple times

§ Great, except once again we need the whole array

Basic Random Sampling

11/14/17 CS 686: Big Data 28

Sampling our NOAA Data

11/14/17 CS 686: Big Data 29

Reservoir Sampling (1/2)

§ When the size of the incoming stream is unknown or there
are memory constraints, reservoir sampling allows
creation of representative samples

§ Set to a fixed size (array) on creation
§ Limits memory usage

§ As data is streamed in, data points are placed randomly
into the array

§ Over time, the likelihood that incoming data will be stored
in the array decreases
§ Ensures long-term representativeness

11/14/17 CS 686: Big Data 30

§ Online sampling technique that creates representative
random samples when:
§ The number of incoming data points in unknown
§ The total dataset cannot fit in main memory

§ Fixed size (n)

§ When data points arrive, they are assigned a random
insertion key (k) in the range [0, 1]
§ If k < n / C, where C is the total number of observations, the

data point replaces a random entry in the reservoir
§ The probability of replacement decreases over time

Reservoir Sampling (2/2)

11/14/17 CS 686: Big Data 31

Reservoir Sampling Extensions

§ Reservoir sampling can be augmented by allowing
sample weights to increase the likelihood of certain
data points being placed in the array
§ We may place a greater weight on samples from a

particular sensor

§ Additionally, storing the insertion key when placing
data in the reservoir allows merging later
§ To determine which elements go in the merged arrays,

just sort by insertion key

11/14/17 CS 686: Big Data 32

§ While reservoir sampling provides a replacement for
our standard random sampling procedure, it does
have weaknesses

§ The sample must fit into memory (generally
acceptable)

§ Outliers or uncommon values will be under-
represented

Representativeness

11/14/17 CS 686: Big Data 33

§ Sometimes the outliers are actually more interesting
than the common cases!

§ Here, we can use stratified sampling to produce a
sample that better represents all populations rather
than just the majority

§ Observe the distribution of data points, and then
create sub-reservoirs across the distribution
§ Uncommon data points now have their own reservoir

and won’t be overpowered by the majority

Stratified Sampling

11/14/17 CS 686: Big Data 34

§ Advancements in low-power computing devices
enable collection and processing of sensor data
§ Rather doing everything in a central location, fog

nodes take on part of the storage and processing load

§ Fog nodes can maintain a reservoir sample of the
observations they record

Motivation: Sensor Data

11/14/17 CS 686: Big Data 35

1. New data points arrive and are sampled by the fog
nodes

2. Data is retained in main memory and indexed to
facilitate queries

3. Over time, the data precision is reduced to make
space for new observations

4. Old data is migrated to secondary storage

5. Even older data is migrated to the cloud

Data Insertion Workflow

11/14/17 CS 686: Big Data 36

§ Over time, the reservoirs will be updated less
frequently
§ Ensures the samples are representative, but

eventually the time range of data points gets very
large

§ Spillways are a hierarchical collection of reservoirs
that vary in spatial scope
§ Each reservoir is the same size but is responsible for a

different amount of data
§ Spillways merge reservoirs as they age

Spillways

11/14/17 CS 686: Big Data 37

Spillway Structure

11/14/17 CS 686: Big Data 38

§ Temporal Curve: how many reservoirs are at each
step in the hierarchy
§ Previous example: f(x) = 2x

§ Merge Threshold: how many reservoirs should be
maintained at each level before a merge can occur
§ Default T = [2, 2, 2, 2] (four-level hierarchy)
§ Keep most recent samples: T = [5, 4, 2, 2]

Configuration Options

11/14/17 CS 686: Big Data 39

§ Multidimensional data points that chosen to be
placed in a reservoir are also added to a red-black
tree
§ Better performance than a B-Tree for small datasets

§ This allows temporal range queries and operators
supported by interval algebra

§ When a data point is replaced or its spillway is
migrated, it is removed from the red-black tree

Facilitating Queries

11/14/17 CS 686: Big Data 40

Interval Algebra Operators

11/14/17 CS 686: Big Data 41

§ We can evaluate the Spillway data structure in three
ways:

1. Accuracy of the samples compared to actual data
2. Effectiveness of coordination between the fog and

cloud (what happens if relevant data is on both)
3. Query throughput handled by the system

§ Test setup: 48 fog nodes, 16 cloud nodes, and
several EC2 clients

Evaluating the Spillway

11/14/17 CS 686: Big Data 42

Accuracy Evaluation

11/14/17 CS 686: Big Data 43

§ When dealing with big data, think about what you
really need to store
§ If two features are highly correlated, it may be better

to throw one away and just predict it instead

§ Summarization, compression, and sketching are all
good ways to make big data more manageable

§ As a backup, you can always have a batch system
storing full-resolution data

Wrapping Up

11/14/17 CS 686: Big Data 44

§ Sampling can greatly improve:
§ Memory/disk consumption
§ Computation time

§ Just make sure your sample is representative
enough for your particular analysis!

Wrapping Up

11/14/17 CS 686: Big Data 45

