CS 686: Special Topics in Big Data

Networking and Messaging

Lecture7

Today's Agenda

= Project 1 Updates
= Networking topics in Big Data

= Message formats and serialization techniques

9/8/17 CS 686: Big Data

Today's Agenda

= Project 1 Updates
= Networking topics in Big Data

= Message formats and serialization techniques

9/8/17 CS 686: Big Data

9/8/17

Project 1 Updates

There have been a few minor tweaks to the P1 spec
Most important: Due Oct 6

Deliverables are posted on Canvas
You can submit your design documents via Canvas

Protocol buffers and Apache Maven are now
installed on the bass cluster

Store your chunk data in /home2/<username>

9/8/17 CS 686: Big Data

A few things to think about...

How you'll configure your chunk sizes
File placement
One approach: random.nextint()

Replication strategy

HDFS has its rack abstraction; we can come up with
something simpler

9/8/17 CS 686: Big Data

Today's Agenda

Project 1 Updates
Networking topics in Big Data

Message formats and serialization techniques

9/8/17 CS 686: Big Data

9/8/17

Network Concerns

For the most part, we can rely on the network to do
its job and live at a higher level of abstraction

Many networking concerns still creep up in
distributed systems

For instance, do we use TCP or UDP?
We still need to think about:

Bandwidth

Latency

9/8/17 CS 686: Big Data

Bandwidth

Also known as throughput

How many bits we can push through the network
Trending upward over time... slowly
1000 Mbps networks are common in data centers
10 Gbps is gaining some traction
Many home internet services are still in the range of 25-
100 Mbps
If we're going to use plumbing metaphors, it's the
size of the pipe

9/8/17 CS 686: Big Data

Latency

How long it takes your bits to get from one point to
another

Latency has been trending downward overall, but not
by leaps and bounds

We are limited by the laws of physics here
How long the pipe is and how fast data can travel
through it

Some communication mediums are more prone to
latency: Ethernet vs WiFi

9/8/17 CS 686: Big Data

9/8/17

Round Trip Times

= Another factor to consider is the round-trip time
= RTTs

= Another way of looking at latency

= Communication rarely goes one way

= Evenif you're uploading a file, you'd like to confirm
that it actually made it over in one piece

= Testing RTTs: pinging a host

9/8/17 CS 686: Big Data

Ping Round Trip Times

= PING alpha.lan (10.0.0.1): 56 data bytes
64 bytes from 10.0.0.1: icmp_seq=0 tt1=64 time=1.133 ms
(From my couch to the closet)

= PING stargate.cs.usfca.edu (138.202.168.21): 56 data bytes
64 bytes from 138.202.168.21: icmp_seq=0 tt1=53 time=15.640 ms
(Down the road to USF)

= PING ruby.cs.colostate.edu (129.82.45.204): 56 data bytes
64 bytes from 129.82.45.204: icmp_seq=0 tt1=50 time=70.991 ms
(Fort Collins, Colorado)

= PING speedtest.shgl.linode.com (139.162.65.37): 56 data bytes
64 bytes from 139.162.65.37: icmp_seq=0 tt1=50 time=124.017 ms
(Singapore)

9/8/17 CS 686: Big Data

Interesting: Physical Distances

= From my router to USF:
2 miles/ 3.2 km

= From USF to Colorado:
~950 miles / 1609 km

= From USF to Singapore:
~8,434 miles / 13,573 km

= https://www.submarinecablemap.com

9/8/17 CS 686: Big Data

9/8/17

Source: https://www.submarinecablemap.com
9/8/17 CS 686: Big Data

Source: https://www.submarinecablemap.com

9/8/17 CS 686: Big Data

Bandwidth-Delay Product (1/2)

= Link capacity (bps) * Round-trip delay time (s)
= This measures how many bits are "in flight"

= How much data is sent before the receiver gets
anything

= A network with a large bandwidth-delay product is
called a long fat network, or LFN (elephen)

= Satellite networking has a large bandwidth-delay
product

9/8/17 CS 686: Big Data

9/8/17

Bandwidth-Delay Product (2/2)

Important because of its interplay with TCP
TCP dynamically tunes its window size
If the window is too small, link capacity is wasted

If the window is too large, the other end gets
overwhelmed!

Queuing delays
Thinking back to our ping example:
My local network (300 Mbit/sec, 1.1 ms) = 0.14 MB
Singapore (50 Mbit/sec, 124.0 ms) = 0.78 MB

9/8/17 CS 686: Big Data

To wrap up...

Most big data applications operate on top of enough
abstraction to almost forget the network exists
This is fine until we hit a situation where one of our
nodes experiences packet loss or congestion
Distributed computations often wait on all
participating nodes' replies
You're only as fast as your slowest worker
In the cloud, this can become a major issue
Where are your nodes? What is the network like?

9/8/17 CS 686: Big Data

Today's Agenda

Project 1 Updates
Networking topics in Big Data

Message formats and serialization techniques

9/8/17 CS 686: Big Data

9/8/17

Messaging

= Previously, we talked a bit about network design

= The messages you send between components and
the network design you choose are closely related

= For instance, recall our ring overlay: we can get by
with just a single message type

9/8/17 CS 686: Big Data

Simple Messaging (1/3)

= If you want to send one well-defined message
between components, all you need is a fixed-size
buffer:

= byte[] buffer = new byte[25];
= Remember: sockets are byte streams, not
"message streams”

= A much more common format:

| Message Size || Message Payload

9/8/17 CS 686: Big Data

20

Simple Messaging (2/3)

= Once you've unpacked the message payload, it can
contain more fields:

| Message Size ” Message Payload

| Message Type | | Version | | Message Data

= This allows for a layered approach:
= Network code
= Object creation code
= Pass through a chain of handlers

9/8/17 CS 686: Big Data

21

9/8/17

Simple Messaging (3/3)

9/8/17

If you don't need advanced features, size prefixed
messages work well

Exceptions:
You'd like to avoid reading the entire message before
you start processing it
You don't even need to process the whole message
(perhaps you are forwarding it somewhere else)
Distributed systems' wire formats have a huge range
of features and complexity

CS 686: Big Data

22

Serialization

9/8/17

Serialization transforms an object, structure, or
application state into a format for transmission

(and often storage to disk)
Most common: binary formats

Better performance
When you receive a serialized message, transforming
it back into its original representation is called
deserialization

CS 686: Big Data

23

Java Serialization (1/2)

9/8/17

Another option is Java's built-in serialization
My advice: don't use it for anything but prototyping
Python has similar functionality in the pickling module

These types of serialization are language-specific,
brittle, and can lead to application errors

Memory leaks

Broken messages between versions

CS 686: Big Data

24

9/8/17

Java Serialization (2/2)

Automated serialization is often not very performant
May produce large object graphs
Class members may be serialized that you don't need
What's the big deal though? Aren't there more
important things to worry about?
Distributed systems, whether they're storing data or
processing it, have to communicate frequently
In some applications you'll speed ~50-70% of your
CPU time serializing / deserializing messages

9/8/17 CS 686: Big Data

25

Alternative Approaches (1/2)

One is Protocol Buffers, of course

Another is manual serialization
In Java: DataOutputStream

Write an int for the message size, followed by an int for

the message type, then a string, etc...
This can be extremely error prone

Apache Hive SerDes require manual work but
automate some of the processes

9/8/17 CS 686: Big Data

26

Alternative Approaches (2/2)

Apache Thrift is quite similar to Protocol Buffers
Designed by Facebook

Lets you define your messages using a DSL, generate
code for different languages, etc.

Also includes an remote procedure call framework
XML ®

JSON

Not highly performant but user friendly, widely
supported, and easy to debug

9/8/17 CS 686: Big Data

27

9/8/17

Benchmarks

= The JVM Serializers project by Eishay Smith makes it
easy to compare serialization technologies
= See: https://github.com/eishay/jvm-serializers

= Results shown here were collected on my laptop

(more or less similar specs to a commodity server...
at least back when it was new!)

= macOS, Quad Core 17-4770HQ, 16 GB RAM

9/8/17 CS 686: Big Data

Automatic Serialization +
Deserialization (ns)

9/8/17

CS 686: Big Data

29

Size (bytes)

9/8/17 CS 686: Big Data

30

9/8/17

10

Manual Optimization (ns)

9/8/17

ostutt-manual [
ryo-manual [
woory [
I
]
I
I

jboss-marshalling-ri

avro-generic

avro-specific:

o I

10000

CS 686: Big Data

31

11

9/8/17

