
9/8/17

1

Lecture 7

CS 686: Special Topics in Big Data

Networking and Messaging

§ Project 1 Updates
§ Networking topics in Big Data
§ Message formats and serialization techniques

Today’s Agenda

9/8/17 CS 686: Big Data 2

§ Project 1 Updates
§ Networking topics in Big Data
§ Message formats and serialization techniques

Today’s Agenda

9/8/17 CS 686: Big Data 3



9/8/17

2

§ There have been a few minor tweaks to the P1 spec
§ Most important: Due Oct 6

§ Deliverables are posted on Canvas
§ You can submit your design documents via Canvas

§ Protocol buffers and Apache Maven are now 
installed on the bass cluster

§ Store your chunk data in /home2/<username>

Project 1 Updates

9/8/17 CS 686: Big Data 4

§ How you’ll configure your chunk sizes
§ File placement

§ One approach: random.nextInt()

§ Replication strategy
§ HDFS has its rack abstraction; we can come up with 

something simpler

A few things to think about…

9/8/17 CS 686: Big Data 5

§ Project 1 Updates
§ Networking topics in Big Data
§ Message formats and serialization techniques

Today’s Agenda

9/8/17 CS 686: Big Data 6



9/8/17

3

§ For the most part, we can rely on the network to do 
its job and live at a higher level of abstraction

§ Many networking concerns still creep up in 
distributed systems
§ For instance, do we use TCP or UDP?

§ We still need to think about:
§ Bandwidth
§ Latency

Network Concerns

9/8/17 CS 686: Big Data 7

§ Also known as throughput
§ How many bits we can push through the network

§ Trending upward over time… slowly
§ 1000 Mbps networks are common in data centers
§ 10 Gbps is gaining some traction
§ Many home internet services are still in the range of 25-

100 Mbps

§ If we’re going to use plumbing metaphors, it’s the 
size of the pipe

Bandwidth

9/8/17 CS 686: Big Data 8

§ How long it takes your bits to get from one point to 
another
§ Latency has been trending downward overall, but not 

by leaps and bounds
§ We are limited by the laws of physics here

§ How long the pipe is and how fast data can travel 
through it
§ Some communication mediums are more prone to 

latency: Ethernet vs WiFi

Latency

9/8/17 CS 686: Big Data 9



9/8/17

4

§ Another factor to consider is the round-trip time
§ RTTs

§ Another way of looking at latency
§ Communication rarely goes one way

§ Even if you’re uploading a file, you’d like to confirm 
that it actually made it over in one piece

§ Testing RTTs: pinging a host

Round Trip Times

9/8/17 CS 686: Big Data 10

§ PING alpha.lan (10.0.0.1): 56 data bytes
64 bytes from 10.0.0.1: icmp_seq=0 ttl=64 time=1.133 ms
(From my couch to the closet)

§ PING stargate.cs.usfca.edu (138.202.168.21): 56 data bytes
64 bytes from 138.202.168.21: icmp_seq=0 ttl=53 time=15.640 ms
(Down the road to USF)

§ PING ruby.cs.colostate.edu (129.82.45.204): 56 data bytes
64 bytes from 129.82.45.204: icmp_seq=0 ttl=50 time=70.991 ms
(Fort Collins, Colorado)

§ PING speedtest.shg1.linode.com (139.162.65.37): 56 data bytes
64 bytes from 139.162.65.37: icmp_seq=0 ttl=50 time=124.017 ms
(Singapore)

Ping Round Trip Times

9/8/17 CS 686: Big Data 11

§ From my router to USF:
2 miles / 3.2 km

§ From USF to Colorado:
~950 miles / 1609 km

§ From USF to Singapore:
~8,434 miles / 13,573 km

§ https://www.submarinecablemap.com

Interesting: Physical Distances

9/8/17 CS 686: Big Data 12



9/8/17

5

9/8/17 CS 686: Big Data 13

Source: https://www.submarinecablemap.com

9/8/17 CS 686: Big Data 14

Source: https://www.submarinecablemap.com

§ Link capacity (bps) * Round-trip delay time (s)
§ This measures how many bits are “in flight”

§ How much data is sent before the receiver gets 
anything

§ A network with a large bandwidth-delay product is 
called a long fat network, or LFN (elephen)

§ Satellite networking has a large bandwidth-delay 
product

Bandwidth-Delay Product (1/2)

9/8/17 CS 686: Big Data 15



9/8/17

6

§ Important because of its interplay with TCP
§ TCP dynamically tunes its window size
§ If the window is too small, link capacity is wasted
§ If the window is too large, the other end gets 

overwhelmed!
§ Queuing delays

§ Thinking back to our ping example:
§ My local network (300 Mbit/sec, 1.1 ms) = 0.14 MB
§ Singapore (50 Mbit/sec, 124.0 ms) = 0.78 MB

Bandwidth-Delay Product (2/2)

9/8/17 CS 686: Big Data 16

§ Most big data applications operate on top of enough 
abstraction to almost forget the network exists

§ This is fine until we hit a situation where one of our 
nodes experiences packet loss or congestion
§ Distributed computations often wait on all

participating nodes’ replies
§ You’re only as fast as your slowest worker

§ In the cloud, this can become a major issue
§ Where are your nodes? What is the network like?

To wrap up…

9/8/17 CS 686: Big Data 17

§ Project 1 Updates
§ Networking topics in Big Data
§ Message formats and serialization techniques

Today’s Agenda

9/8/17 CS 686: Big Data 18



9/8/17

7

§ Previously, we talked a bit about network design
§ The messages you send between components and 

the network design you choose are closely related
§ For instance, recall our ring overlay: we can get by 

with just a single message type

Messaging

9/8/17 CS 686: Big Data 19

§ If you want to send one well-defined message 
between components, all you need is a fixed-size 
buffer:
§ byte[] buffer = new byte[25];

§ Remember: sockets are byte streams, not
”message streams”

§ A much more common format:

Simple Messaging (1/3)

9/8/17 CS 686: Big Data 20

§ Once you’ve unpacked the message payload, it can 
contain more fields:

§ This allows for a layered approach:
§ Network code
§ Object creation code
§ Pass through a chain of handlers

Simple Messaging (2/3)

9/8/17 CS 686: Big Data 21



9/8/17

8

§ If you don’t need advanced features, size prefixed 
messages work well

§ Exceptions:
§ You’d like to avoid reading the entire message before 

you start processing it
§ You don’t even need to process the whole message 

(perhaps you are forwarding it somewhere else)

§ Distributed systems’ wire formats have a huge range 
of features and complexity

Simple Messaging (3/3)

9/8/17 CS 686: Big Data 22

§ Serialization transforms an object, structure, or 
application state into a format for transmission
§ (and often storage to disk)

§ Most common: binary formats
§ Better performance

§ When you receive a serialized message, transforming 
it back into its original representation is called 
deserialization

Serialization

9/8/17 CS 686: Big Data 23

§ Another option is Java’s built-in serialization
§ My advice: don’t use it for anything but prototyping
§ Python has similar functionality in the pickling module

§ These types of serialization are language-specific, 
brittle, and can lead to application errors
§ Memory leaks
§ Broken messages between versions

Java Serialization (1/2)

9/8/17 CS 686: Big Data 24



9/8/17

9

§ Automated serialization is often not very performant
§ May produce large object graphs
§ Class members may be serialized that you don’t need

§ What’s the big deal though? Aren’t there more 
important things to worry about?
§ Distributed systems, whether they’re storing data or 

processing it, have to communicate frequently
§ In some applications you’ll speed ~50-70% of your 

CPU time serializing / deserializing messages

Java Serialization (2/2)

9/8/17 CS 686: Big Data 25

§ One is Protocol Buffers, of course
§ Another is manual serialization

§ In Java: DataOutputStream
§ Write an int for the message size, followed by an int for 

the message type, then a string, etc…
§ This can be extremely error prone

§ Apache Hive SerDes require manual work but 
automate some of the processes

Alternative Approaches (1/2)

9/8/17 CS 686: Big Data 26

§ Apache Thrift is quite similar to Protocol Buffers
§ Designed by Facebook
§ Lets you define your messages using a DSL, generate 

code for different languages, etc.
§ Also includes an remote procedure call framework

§ XML L
§ JSON

§ Not highly performant but user friendly, widely 
supported, and easy to debug

Alternative Approaches (2/2)

9/8/17 CS 686: Big Data 27



9/8/17

10

§ The JVM Serializers project by Eishay Smith makes it 
easy to compare serialization technologies
§ See: https://github.com/eishay/jvm-serializers

§ Results shown here were collected on my laptop 
(more or less similar specs to a commodity server…
at least back when it was new!)
§ macOS, Quad Core I7-4770HQ, 16 GB RAM

Benchmarks

9/8/17 CS 686: Big Data 28

Automatic Serialization + 
Deserialization (ns)

9/8/17 CS 686: Big Data 29

Size (bytes)

9/8/17 CS 686: Big Data 30



9/8/17

11

Manual Optimization (ns)

9/8/17 CS 686: Big Data 31


