CS 686: Special Topics in Big Data

DHTs and Data Models

Lecture 9

Today's Agenda

= DHT Replication Strategies
= Reducing latency, boosting performance
= Virtual Nodes

= Data Models

9/14/17 CS 686: Big Data

Today's Agenda

= DHT Replication Strategies
= Reducing latency, boosting performance
= Virtual Nodes

= Data Models

9/14/17 CS 686: Big Data

Replication

We've seen from the HDFS paper that maintaining 3
total copies of each file is our gold standard

In some situations, 5 is warranted

...And sometimes having O copies is the way to go (like
in the case of poetry/artwork by the instructor)

It's always worth thinking about the cost of
maintaining these, though

How do we do replication in DHTs?

9/14/17 CS 686: Big Data

Replicate to Successors

= SendacopytoR
successors

= If Node 5 goes down,
Node 7 will take its load

= Great! Promote replica
to primary file

= Doesn't account for
query traffic, physical
locations, etc.

9/14/17 CS 686: Big Data

Query Paths

9/14/17

Rather than replicating immediately to a certain set
of nodes, wait for queries to come in

Cache the replicas at nodes that forwarded the query

Reduces the latency of frequent queries that originate
at the same node

Let's say my client always contacts the node in San
Francisco, which then retrieves from a node in Texas

Store areplicain SF

Better for query performance, not absolute safety

CS 686: Big Data

Salting

For each file, add a salt

Random data used as an additional input to the hash
function

SALT_REPLICA1 = "Hi therel!”
SALT_REPLICA2 = "What what what”

put(key + SALT _REPLICA1, value)

Now we can deterministically locate the replicas
associated with a key

9/14/17 CS 686: Big Data

Today's Agenda

= DHT Replication Strategies
* Reducing latency, boosting performance
= Virtual Nodes

= Data Models

9/14/17 CS 686: Big Data

Zero-Hop DHTs (1/2)

9/14/17

When nodes enter and leave the network in a
controlled fashion, zero-hop DHTs may be a good fit

O(1) routing hops rather than O(log n)

Every node must maintain an entire copy of the
routing table

Synchronous updates are not required

If an old route is used, just forward the request to the
correct node

Node down? Try the predecessor

CS 686: Big Data

Zero-Hop DHTs (2/2)

9/14/17

Zero-Hop DHTs are a great example of finding a
compromise in the middle

Retain many good aspects of regular DHTs, but are
also easier to implement

May sacrifice some scalability, but in general they
target a different use case

Some implementations: Dynamo, Cassandra, Riak
Dynamo: Amazon & SLAs

CS 686: Big Data 10

GlusterFS

Unlike most of the distributed file systems we've
surveyed, GlusterFS is actually mountable

Backed by Zero-Hop DHT
Hashes directory ID + file ID to place/locate files

When we use a regular file system, move operations are
common

When the usual lookup fails, broadcast to everyone

Supports linkfiles, which are essentially a symlink to
redirect lookup requests to another node

Great for dealing with file migrations

9/14/17 CS 686: Big Data 11

Eventual Consistency (1/2)

Joining or leaving the
Chord network causes
Inconsistency

In this example, it may
take a bit for node 15 to
learn about node 5

predecessor.
Give me {5, 4, 3}

The system will
eventually reach a steady
state (usually in ms)

9/14/17 CS 686: Big Data 12

Eventual Consistency (2/2)

9/14/17

Eventual consistency is a mainstay of distributed
systems

It's easier to accept that things will be inconsistent
(sometimes) rather than trying to prevent it
Amazon: shopping cart vs billing

You can often achieve much better performance if
you relax consistency

But remember to ask yourself: are your
customers/clients okay with that?

CS 686: Big Data 13

Today's Agenda

= DHT Replication Strategies
= Reducing latency, boosting performance
= Virtual Nodes

= Data Models

9/14/17 CS 686: Big Data

14

Avoiding Hotspots

9/14/17

Our cluster may be heterogeneous or have hotspots
that receive a disproportionate amount of load

To help fill in the gaps and even out the load, nodes
may be required to initially represent several IDs

Used frequently in large deployments — hundreds of
|IDs are assigned to each node

Allows variations on the default load level: new node
could take on 1.2 nodes’ worth of keys

CS 686: Big Data 15

Lonely Node 5

9/14/17 CS 686: Big Data

16

Cassandra: VNodes

See: https://www.datastax.com/dev/blog/virtual-nodes-in-cassandra-1-2

9/14/17 CS 686: Big Data 17

VNodes

9/14/17

With virtual nodes, each physical host is responsible
for many more portions of the overall hash space

Common approach: randomize the vnode locations

More coverage means less of a chance that one
node gets stuck with too much load

But wait, wasn't localizing network changes one of
the pros of using DHTSs?

Yes. But more coverage can be a good thing too.

CS 686: Big Data 18

Replacing Node 5

...

-~
§~.
~

....

@ O

See: https://www.datastax.com/dev/blog/virtual-nodes-in-cassandra-1-2

9/14/17 CS 686: Big Data

O® OO ®@®

19

Replacing Node 5, With VNodes

M T O T R R

-e=""
-

......................................

..

Node 5 Node 6

See: https://www.datastax.com/dev/blog/virtual-nodes-in-cassandra-1-2

9/14/17 CS 686: Big Data

20

VNodes: Pros and Cons

VNode pros:
Better load balancing properties

Better parallelism when recovering

VNode cons:

Less localized faults: loss of a single node is dispersed
across the hash space

Many more nodes participating in recovery means
less resources for answering queries

9/14/17 CS 686: Big Data

21

Today's Agenda

= DHT Replication Strategies
= Reducing latency, boosting performance
= Virtual Nodes

= Data Models

9/14/17 CS 686: Big Data

22

Data Models

= Key-value

= Document

= Wide Column
= Graph

= Tabular

9/14/17

CS 686: Big Data

23

Key-Value Stores

= Data model similar to a hash table
= Flat namespace

= Simple functionality

= Put(key, value)

= Get(key)

= No query/search support
* Frequent uses:

= General (file) storage
= Object caches

9/14/17 CS 686: Big Data

24

Key-Value Data Model

Mr_Fluffers.jpg

9/14/17 CS 686: Big Data

25

Content-Addressable Storage

In some cases you don't want to store data with a file
name or identifier
With CAS, just use the content's hash key directly
put(my_file.txt) > 0x123456789
Use cases:
Preventing duplicate data from being stored

Verifying the integrity of documents
Pulling in file updates

9/14/17 CS 686: Big Data 26

Document Stores

Beyond key-value semantics, document stores also
allow content-aware searches

Support a wide variety of data types

Serialization formats, multidimensional arrays
Generally use inverted indexes to support queries

Index options:

Domain-specific indexer
Well-defined storage format (JSON, XML)

9/14/17 CS 686: Big Data

27

Document Store Data Model

(Key/ldentifier)

matthew.json

stark.json

9/14/17

—

—

(Document)

“name”: “Matthew Malensek”,
“locale”: “en-US.UTF-8”,
“status”: “Teaching”,
“location”: “HR 148",

“name”: “Tony Stark”,
“alias”: “lron Man”,
“administrator”: true,
“status”: “Saving the World”,

CS 686: Big Data 28

Other Document Types

= We are all familiar with JSON and XML

= Scientific document types:

= NetCDF

= Unidata
= HDF5
= GRIB

= World Meteorological Organization

= And of course, plain text, ODF, .doc(x)

9/14/17 CS 686: Big Data

29

Wide-Column Stores

9/14/17

Multidimensional key-value stores

Values are arbitrary byte arrays
Can be sparsely populated

A row key references a set of column families
Writes under a row key are atomic

Keys are stored in lexicographic order to facilitate
scanning across records

Often include column-based versioning

CS 686: Big Data

30

Wide-Column Data Model

Column
Family
"contents:" "anchor:cnnsi.com” "anchor:my.look.ca"
| | |
- IR v
I “<htmit> Nt | ' I
"com.cnn.www" — '" Shtmb>re s ! "CNN" = tg "CNN.com" |« tg
| ntmi>... 4___:26_‘___ . S S L
| | | 5 |
Sorted alphabetically \ Versions

Source: Chang et al., “Bigtable: A Distributed Storage System for Structured Data”

9/14/17 CS 686: Big Data

31

Graph Stores

Relational databases provide some level of graph
support: links between entities via foreign keys

Fairly restrictive, not performant for large graphs

Graph stores represent data as a collection of
vertices and edges

Models connections (relationships)

Can store data in both vertices, edges

Query via DSL or SQL

Great for applications like Facebook friends

9/14/17 CS 686: Big Data 32

Tabular Stores

Densely populated tables (relations)
Fixed set of data types
Schema does not frequently change

Caveats:
All tables must have at least one primary key column

Data partitioning is specified explicitly

9/14/17 CS 686: Big Data

33

Tabular Data Model

Name lAdaress |Phone lwithDate

Matthew 1625 W Oak St (970) 379-4929 2/27/22
Michelle 1234 N Drury Lane (327) 876-5309 11/16/81
Bob 1600 Pennsylvania Ave (202) 456-1111 08/04/61

9/14/17 CS 686: Big Data 34

Development Timeline

~1970: relational databases

SQL, relational models

~2009: surge in popularity of “NoSQL" systems

Relaxed consistency, de-emphasizing transactions,
new data models

~2012: "NewSQL" systems

Tabular data model, ACID support, but built on
distributed principles

9/14/17 CS 686: Big Data

35

Data Models: Classifications

Key- Wide-Column Tabular
Value

Schema None Ad-Hoc Semi- Ad-hoc Structured
Structured
Search Key Content Row/Column DSL, SQL SQL

9/14/17 CS 686: Big Data 36

Wrapping Up

9/14/17

These models influence both storage and retrieval
Simple data models can allow increased automation

Well-defined schemas provide greater query
flexibility but require more configuration

Strong consistency is most common when records
are fine-grained

CS 686: Big Data

37

