
Lecture 9

CS 686: Special Topics in Big Data

DHTs and Data Models



§ DHT Replication Strategies

§ Reducing latency, boosting performance

§ Virtual Nodes

§ Data Models

Today’s Agenda

9/14/17 CS 686: Big Data 2



§ DHT Replication Strategies

§ Reducing latency, boosting performance

§ Virtual Nodes

§ Data Models

Today’s Agenda

9/14/17 CS 686: Big Data 3



§ We’ve seen from the HDFS paper that maintaining 3
total copies of each file is our gold standard
§ In some situations, 5 is warranted
§ …And sometimes having 0 copies is the way to go (like 

in the case of poetry/artwork by the instructor)

§ It’s always worth thinking about the cost of 
maintaining these, though

§ How do we do replication in DHTs?

Replication

9/14/17 CS 686: Big Data 4



§ Send a copy to R 
successors

§ If Node 5 goes down, 
Node 7 will take its load
§ Great! Promote replica 

to primary file

§ Doesn’t account for 
query traffic, physical 
locations, etc.

Replicate to Successors

9/14/17 CS 686: Big Data 5



§ Rather than replicating immediately to a certain set 
of nodes, wait for queries to come in

§ Cache the replicas at nodes that forwarded the query
§ Reduces the latency of frequent queries that originate 

at the same node
§ Let’s say my client always contacts the node in San 

Francisco, which then retrieves from a node in Texas
§ Store a replica in SF

§ Better for query performance, not absolute safety

Query Paths

9/14/17 CS 686: Big Data 6



§ For each file, add a salt
§ Random data used as an additional input to the hash 

function
§ SALT_REPLICA1 = “Hi there!”
§ SALT_REPLICA2 = “What what what”

§ put(key + SALT_REPLICA1, value)

§ Now we can deterministically locate the replicas 
associated with a key

Salting

9/14/17 CS 686: Big Data 7



§ DHT Replication Strategies

§ Reducing latency, boosting performance

§ Virtual Nodes

§ Data Models

Today’s Agenda

9/14/17 CS 686: Big Data 8



§ When nodes enter and leave the network in a 
controlled fashion, zero-hop DHTs may be a good fit

§ O(1) routing hops rather than O(log n)

§ Every node must maintain an entire copy of the 
routing table
§ Synchronous updates are not required
§ If an old route is used, just forward the request to the 

correct node
§ Node down? Try the predecessor

Zero-Hop DHTs (1/2)

9/14/17 CS 686: Big Data 9



§ Zero-Hop DHTs are a great example of finding a 
compromise in the middle

§ Retain many good aspects of regular DHTs, but are 
also easier to implement 
§ May sacrifice some scalability, but in general they 

target a different use case

§ Some implementations: Dynamo, Cassandra, Riak
§ Dynamo: Amazon & SLAs 

Zero-Hop DHTs (2/2)

9/14/17 CS 686: Big Data 10



§ Unlike most of the distributed file systems we’ve 
surveyed, GlusterFS is actually mountable
§ Backed by Zero-Hop DHT

§ Hashes directory ID + file ID to place/locate files
§ When we use a regular file system, move operations are 

common
§ When the usual lookup fails, broadcast to everyone

§ Supports linkfiles, which are essentially a symlink to 
redirect lookup requests to another node
§ Great for dealing with file migrations

GlusterFS

9/14/17 CS 686: Big Data 11



§ Joining or leaving the 
Chord network causes 
inconsistency

§ In this example, it may 
take a bit for node 15 to 
learn about node 5

§ The system will 
eventually reach a steady 
state (usually in ms)

Eventual Consistency (1/2)

9/14/17 CS 686: Big Data 12



§ Eventual consistency is a mainstay of distributed 
systems

§ It’s easier to accept that things will be inconsistent 
(sometimes) rather than trying to prevent it
§ Amazon: shopping cart vs billing

§ You can often achieve much better performance if 
you relax consistency
§ But remember to ask yourself: are your 

customers/clients okay with that?

Eventual Consistency (2/2)

9/14/17 CS 686: Big Data 13



§ DHT Replication Strategies

§ Reducing latency, boosting performance

§ Virtual Nodes

§ Data Models

Today’s Agenda

9/14/17 CS 686: Big Data 14



§ Our cluster may be heterogeneous or have hotspots
that receive a disproportionate amount of load

§ To help fill in the gaps and even out the load, nodes 
may be required to initially represent several IDs
§ Used frequently in large deployments – hundreds of 

IDs are assigned to each node
§ Allows variations on the default load level: new node 

could take on 1.2 nodes’ worth of keys

Avoiding Hotspots

9/14/17 CS 686: Big Data 15



Lonely Node 5

9/14/17 CS 686: Big Data 16

Help!



Cassandra: VNodes

9/14/17 CS 686: Big Data 17

See: https://www.datastax.com/dev/blog/virtual-nodes-in-cassandra-1-2



§ With virtual nodes, each physical host is responsible 
for many more portions of the overall hash space

§ Common approach: randomize the vnode locations

§ More coverage means less of a chance that one 
node gets stuck with too much load

§ But wait, wasn’t localizing network changes one of 
the pros of using DHTs?
§ Yes. But more coverage can be a good thing too.

VNodes

9/14/17 CS 686: Big Data 18



Replacing Node 5

9/14/17 CS 686: Big Data 19

See: https://www.datastax.com/dev/blog/virtual-nodes-in-cassandra-1-2



Replacing Node 5, With VNodes

9/14/17 CS 686: Big Data 20

See: https://www.datastax.com/dev/blog/virtual-nodes-in-cassandra-1-2



§ VNode pros:
§ Better load balancing properties
§ Better parallelism when recovering

§ VNode cons:
§ Less localized faults: loss of a single node is dispersed 

across the hash space
§ Many more nodes participating in recovery means 

less resources for answering queries

VNodes: Pros and Cons

9/14/17 CS 686: Big Data 21



§ DHT Replication Strategies

§ Reducing latency, boosting performance

§ Virtual Nodes

§ Data Models

Today’s Agenda

9/14/17 CS 686: Big Data 22



§ Key-value

§ Document

§ Wide Column

§ Graph

§ Tabular

Data Models

9/14/17 CS 686: Big Data 23



Key-Value Stores

§ Data model similar to a hash table
§ Flat namespace

§ Simple functionality
§ Put(key, value)
§ Get(key)
§ No query/search support

§ Frequent uses:
§ General (file) storage
§ Object caches

CS 686: Big Data9/14/17 24



Mr_Fluffers.jpg
01000101111000010
10101001011110100
01010101010001110
01000010010101001

(Key) (Value)

Mr_Fluffers.jpg

Mr_Fluffers.jpg
01000101111000010
10101001011110100
01010101010001110
01000010010101001

Mr_Fluffers.jpg

Mr_Fluffers.jpg
01000101111000010
10101001011110100
01010101010001110
01000010010101001

Mr_Fluffers.jpg

Key-Value Data Model

CS 686: Big Data9/14/17 25



§ In some cases you don’t want to store data with a file 
name or identifier

§ With CAS, just use the content’s hash key directly
§ put(my_file.txt) à 0x123456789

§ Use cases:
§ Preventing duplicate data from being stored
§ Verifying the integrity of documents
§ Pulling in file updates

Content-Addressable Storage

9/14/17 CS 686: Big Data 26



Document Stores

§ Beyond key-value semantics, document stores also 
allow content-aware searches

§ Support a wide variety of data types
§ Serialization formats, multidimensional arrays

§ Generally use inverted indexes to support queries

§ Index options:
§ Domain-specific indexer
§ Well-defined storage format (JSON, XML)

CS 686: Big Data9/14/17 27



Document Store Data Model

CS 686: Big Data9/14/17 28



§ We are all familiar with JSON and XML

§ Scientific document types:
§ NetCDF

§ Unidata
§ HDF5
§ GRIB

§ World Meteorological Organization

§ And of course, plain text, ODF, .doc(x)

Other Document Types

9/14/17 CS 686: Big Data 29



Wide-Column Stores

§ Multidimensional key-value stores
§ Values are arbitrary byte arrays

§ Can be sparsely populated

§ A row key references a set of column families
§ Writes under a row key are atomic
§ Keys are stored in lexicographic order to facilitate 

scanning across records

§ Often include column-based versioning

CS 686: Big Data9/14/17 30



Wide-Column Data Model

CS 686: Big Data

"CNN.com""CNN"
"<html>..."

"<html>..."
"<html>..."

t9
t6

t3t5 8t

"anchor:cnnsi.com"

"com.cnn.www"

"anchor:my.look.ca""contents:"

Figure 1: A slice of an example table that stores Web pages. The row name is a reversed URL. The contents column family con-
tains the page contents, and the anchor column family contains the text of any anchors that reference the page. CNN’s home page
is referenced by both the Sports Illustrated and the MY-look home pages, so the row contains columns named anchor:cnnsi.com
and anchor:my.look.ca. Each anchor cell has one version; the contents column has three versions, at timestamps t3, t5, and t6.

We settled on this data model after examining a variety
of potential uses of a Bigtable-like system. As one con-
crete example that drove some of our design decisions,
suppose we want to keep a copy of a large collection of
web pages and related information that could be used by
many different projects; let us call this particular table
the Webtable. In Webtable, we would use URLs as row
keys, various aspects of web pages as column names, and
store the contents of the web pages in the contents: col-
umn under the timestamps when they were fetched, as
illustrated in Figure 1.

Rows

The row keys in a table are arbitrary strings (currently up
to 64KB in size, although 10-100 bytes is a typical size
for most of our users). Every read or write of data under
a single row key is atomic (regardless of the number of
different columns being read or written in the row), a
design decision that makes it easier for clients to reason
about the system’s behavior in the presence of concurrent
updates to the same row.

Bigtable maintains data in lexicographic order by row
key. The row range for a table is dynamically partitioned.
Each row range is called a tablet, which is the unit of dis-
tribution and load balancing. As a result, reads of short
row ranges are efficient and typically require communi-
cation with only a small number of machines. Clients
can exploit this property by selecting their row keys so
that they get good locality for their data accesses. For
example, in Webtable, pages in the same domain are
grouped together into contiguous rows by reversing the
hostname components of the URLs. For example, we
store data for maps.google.com/index.html under the
key com.google.maps/index.html. Storing pages from
the same domain near each other makes some host and
domain analyses more efficient.

Column Families

Column keys are grouped into sets called column fami-
lies, which form the basic unit of access control. All data
stored in a column family is usually of the same type (we
compress data in the same column family together). A
column family must be created before data can be stored
under any column key in that family; after a family has
been created, any column key within the family can be
used. It is our intent that the number of distinct column
families in a table be small (in the hundreds at most), and
that families rarely change during operation. In contrast,
a table may have an unbounded number of columns.
A column key is named using the following syntax:
family:qualifier. Column family names must be print-
able, but qualifiers may be arbitrary strings. An exam-
ple column family for the Webtable is language, which
stores the language in which a web page was written. We
use only one column key in the language family, and it
stores each web page’s language ID. Another useful col-
umn family for this table is anchor; each column key in
this family represents a single anchor, as shown in Fig-
ure 1. The qualifier is the name of the referring site; the
cell contents is the link text.
Access control and both disk and memory account-
ing are performed at the column-family level. In our
Webtable example, these controls allow us to manage
several different types of applications: some that add new
base data, some that read the base data and create derived
column families, and some that are only allowed to view
existing data (and possibly not even to view all of the
existing families for privacy reasons).

Timestamps

Each cell in a Bigtable can contain multiple versions of
the same data; these versions are indexed by timestamp.
Bigtable timestamps are 64-bit integers. They can be as-
signed by Bigtable, in which case they represent “real
time” in microseconds, or be explicitly assigned by client

To appear in OSDI 2006 2

Sorted	alphabetically Versions

Column	
Family

Source:	Chang	et	al.,	“Bigtable:	A	Distributed	Storage	System	for	Structured	Data”

9/14/17 31



§ Relational databases provide some level of graph 
support: links between entities via foreign keys
§ Fairly restrictive, not performant for large graphs

§ Graph stores represent data as a collection of 
vertices and edges
§ Models connections (relationships)
§ Can store data in both vertices, edges
§ Query via DSL or SQL

§ Great for applications like Facebook friends

Graph Stores

9/14/17 CS 686: Big Data 32



Tabular Stores

CS 686: Big Data

§ Densely populated tables (relations)

§ Fixed set of data types

§ Schema does not frequently change

§ Caveats:
§ All tables must have at least one primary key column
§ Data partitioning is specified explicitly

9/14/17 33



Tabular Data Model

Name Address Phone Birth Date
Matthew 1625	W	Oak	St (970) 379-4929 2/27/22

Michelle 1234	N	Drury	Lane (327)	876-5309 11/16/81

Bob 1600	Pennsylvania Ave (202)	456-1111 08/04/61

CS 686: Big Data9/14/17 34



§ ~1970: relational databases
§ SQL, relational models

§ ~2009: surge in popularity of “NoSQL” systems
§ Relaxed consistency, de-emphasizing transactions, 

new data models

§ ~2012: “NewSQL” systems
§ Tabular data model, ACID support, but built on 

distributed principles

Development Timeline

9/14/17 CS 686: Big Data 35



Data Models: Classifications

CS 686: Big Data

Key-
Value

Document Wide-Column Graph Tabular

Schema None Ad-Hoc Semi-
Structured

Ad-hoc Structured

Search Key Content Row/Column DSL,	SQL SQL

9/14/17 36



Wrapping Up

CS 686: Big Data

§ These models influence both storage and retrieval

§ Simple data models can allow increased automation

§ Well-defined schemas provide greater query 
flexibility but require more configuration

§ Strong consistency is most common when records 
are fine-grained

9/14/17 37


