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Abstract—As data volumes increase, there is a pressing need to
make sense of the data in a timely fashion. Voluminous datasets
are often multidimensional with individual data points repre-
senting a vector of features. Data scientists fit models to the
data — using all features or a subset thereof — and then use
these models to inform their understanding of phenomena or
make predictions. The performance of these analytical models
is assessed based on their accuracy and ability to generalize
on unseen data. Several frameworks exist for drawing insights
from voluminous datasets, but have limited scalability (which
leads to prolonged training times), poor resource utilization,
narrow applicability across problem domains, and insufficient
support for combining diverse model fitting algorithms.

In this study, we describe our methodology for scalable
supervised learning over voluminous datasets. The methodol-
ogy explores the effect of controlled partitioning of the feature
space, as well as how analytical models can be combined to
preserve accuracy. Rather than build a single, all-encompassing
model, we enable practitioners to construct an ensemble of
models that are trained independently in parallel over different
portions of the data space. This can provide faster training
times and increased prediction accuracy overall; our empirical
benchmarks demonstrate the suitability of our approach using
real-world data.

Index Terms—Distributed ensemble learning, voluminous
datasets, parallel model training

1. Introduction

A confluence of factors has contributed to exponential
growth in data volumes. Improvements in disk densities,
capacities, and quality alongside falling costs have made
it cheaper to store increasing amounts of data. Miniatur-
ization and improvements in sensing equipment have led
to a proliferation of observational devices and continuous
sensing environments, such as the Internet of Things (IoT).
Consumer devices (smartphones, tablets, and so on) also
add substantially to overall data volumes, as well as simu-
lations, sales tracking, and commercial data collection and
harvesting activities, including social media.

Voluminous datasets offer a multitude of opportunities
to extract insights. These insights can be used to understand

phenomena, inform planning, and make forecasts based on
current conditions. This often involves leveraging machine
learning algorithms that fit models to the data, such as linear
regression, non-linear structures (such as those in artificial
neural networks), decision trees, and deep networks.

The model fitting process involves feature extraction,
preprocessing, and transformation. A key component of this
process is iterative training where weights are assigned to
features, incrementally refined, and hyperparameters asso-
ciated with the model are tuned. Model performance is as-
sessed using cross validation (by generating multiple folds of
the dataset) or with a separately held validation dataset. The
model fitting process underpins our understanding of how
features interact with each other, their relative importances,
and the influence features have on particular phenomena. A
performant model can then be used as a surrogate for the
data.

Model fitting and training is time consuming. However,
once trained, model evaluations to predict or classify phe-
nomena can often be performed in real time. Training times,
model accuracy, disk and network I/O, CPU utilization,
and memory usage are all considered in the performance
evaluations carried out in this study.

1.1. Research Challenges

Model creation over voluminous data poses unique I/O
and CPU challenges:

1) Scalability: In this problem domain, datasets tend to
grow continuously. Solutions must be able to scale up
to meet the demands of growing data volumes.

2) Computation: model fitting is computationally expen-
sive and often involves, inter alia, determining coeffi-
cients associated with features, the interactions between
them, and addressing model complexity either as part
of the algorithm or via regularization constraints.

3) I/O Costs: the I/O subsystem is several orders of
magnitude slower than memory. Further, improvements
to I/O hardware happen at a much slower pace [1]. Data
must be read from disks prior to fitting models.

4) Generalization: our approach must cope with both
overfitting and underfitting to ensure that the resulting
model performs well with unseen data.



1.2. Research Questions

The primary objective of this study is to facilitate scal-
able creation of machine learning models over voluminous
datasets. Specific research questions that we explore include:
RQ1 How can we reduce model training times? As data

volumes increase, training times increase. Timeliness is
critically important when making predictions that must
be capitalized or acted upon.

RQ2 How can we ensure that this reduction in training
times is not at the expense of accuracy? We will con-
trast the accuracy of the models using our methodology
with that of a canonical model that was trained without
regard for training times, and with a focus on accuracy.

RQ3 How can we ensure that the methodology scales with
increases in data volumes and the number of machines
available? Coping with increased data by adding ma-
chines should result in roughly constant training times.

1.3. Approach Summary

The crux of our methodology, Concerto, is to provide
faster model creation/training over voluminous data. In par-
ticular, we focus on regression models. Our methodology
targets: (1) alleviation of I/O constraints, (2) creation of
independent models in a distributed environment, (3) ensur-
ing data locality during the model creation process, and (4)
combining several methods to preserve prediction accuracy.

Training a single, all-encompassing model may involve
network I/O and synchronization barriers for updating model
parameters because the data volumes are often far too big
to be entirely resident on a single disk. In such cases,
the learning algorithm is locally applied to data hosted
by worker machines in parallel to find subsolutions that
are synchronized and aggregated to update the model. The
process is iterative and continues until a stopping condition
is reached. Note that some algorithms are sequential in
nature and cannot be easily parallelized.

Rather than build a single, all-encompassing model, we
launch multiple training processes to fit several models in
parallel. In our setting, data is partitioned and distributed
over a collection of machines. Each model has data locality;
the model is restricted to, and locally trained on, data
available on a given machine without data transmission.
Each model instance is trained independently, ranks features,
performs feature selection, and so on.

Model creation leverages the distributed environment
by ensuring that training executes in parallel on multiple
machines. If there are N models, and assuming that the data
is distributed more or less uniformly, then we can achieve
an N -fold speedup in training times. The key reason for
the speedup is that I/O and CPU costs are amortized over
the distributed collection of machines. This also facilitates
straightforward fault tolerance measures.

Individual model instances are used to construct an en-
semble whose behavior depends on how the training dataset
was partitioned. The ensemble exploits the insights gained

from the individual models and partitioned data to generate
a prediction for a given observation.

1.4. Paper Contributions

In this study, we describe our framework for fast,
distributed creation of model ensembles over voluminous
datasets. While it is possible to implement our methodol-
ogy with other machine learning frameworks or distributed
computation engines, Concerto is integrated and purpose-
built for extreme-scale datasets and scenarios that warrant
distributed ensembles. The methodology is demonstrably
scalable while maintaining accuracy, and does not require
synchronization barriers or network communication between
participating machines. These advantages are facilitated by
our ensemble data partitioning and training functionality.
Specific contributions include:

1) Amortizing I/O and CPU costs by orchestrating model
creation/training in a distributed environment. Models
are built independently to ensure scalability and do not
require synchronization.

2) Preserving accuracy by considering all observations in
the training process across data partitions instead of
sampling or reducing the dimensionality of the dataset.

3) Providing fault tolerance by relaunching failed learning
processes on new machines without impacting the rest
of the training process.

4) Allowing for combinations of diverse machine learning
models to make a single prediction, and flexibility to
easily incorporate new models in the future.

5) Supporting inherently sequential algorithms without
modifications.

Finally, while this study focuses on regression models,
we posit that our methodology is equally applicable to
classification problems.

2. Related Work

Sampling is a commonly-used strategy for dealing with
voluminous datasets when computational resources are in-
sufficient. Sampling relies on a random process to create a
smaller version of the original data; the subset can then be
used as a surrogate for building the analytical models. For
many domains, strategies [2], [3], [4] can create a smaller
representative subset of the original dataset that enables
building analytics models with performance similar to the
original [5]. Although sampling enables analysis of volumi-
nous data, studies have shown that increasing the sampling
size of such data usually leads to better accuracy [6].

Another approach is to build a complex model us-
ing voluminous data distributed across several networked
machines. Such approaches are effective in industry-scale
settings involving training datasets with sizes ranging from
1TB to 1PB [7]. However, the cost of moving voluminous
data among distributed machines is prohibitive, and cost
concerns force the proposed systems to support data-centric
computation. Collocating the computations with distributed
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data portions involves exploiting the natural decomposability
of the objective function over the training data or, if possible,
reworking the learning algorithm to run in a distributed
manner. Often, approaches must carefully consider both
task- and data-level parallelism to be effective [8].

A broad spectrum of machine learning problems in-
volves the execution of iterative computations. To enable
such a feature on large-scale data, some approaches have
relied on the optimization of the MapReduce framework [9],
[10], and others employed a graph abstraction to express
computations [11]. Additional frameworks [12], [13], [7],
[14] have been proposed to support a broader class of
machine learning algorithms.

The main issue with most distributed approaches is ex-
pensive synchronization barriers involved in updating model
parameters for each refining step, which leads to long train-
ing times. To minimize this issue, distributed systems ap-
proaches often relax the synchronization step at the expense
of accuracy. Additionally, some algorithms are sequential in
nature and simply cannot be efficiently distributed.

3. Methodology

The primary challenges associated with training an all-
encompassing, distributed model on a voluminous dataset
are long training times, infeasibility for some learning algo-
rithms, and inefficient utilization of computational resources.
Concerto aims to overcome these challenges and consists of
three tasks:
(A) Partitioning the dataset into several subsets with man-

ageable sizes and dispersing them over the cluster. We
support two methods: input and output partitioning.

(B) Launching parallel learning processes that train models
over the partitions independently.

(C) Building ensembles by evaluating model performance
and configuring a gate function to select appropriate
models to use when making predictions.

These tasks are summarized in Figure 1. Our method-
ology enables the construction of scalable ensembles that
have the potential to generalize well. The main intention
behind our use of partitioning is to enable learning in parallel
from voluminous datasets with high prediction accuracy by
capturing localized patterns associated with different regions
of the input/output space. In doing so, the resulting gate
function will select models that are most specialized for
particular subsets of observations.

3.1. Partitioning the Data

Before dispersing data across the cluster, we sample
from the dataset to create a guidance set that is used for
ensemble assessment. The guidance set also provides a rep-
resentative snapshot of dataset properties in situations where
new information continually streams into the system. We
rely on k-fold cross-validation to train, assess, and tune the
complexity of the individual models. Partitioning methods
can provide high-quality training sets that ultimately lead
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Figure 1: Tasks carried out by Concerto. Datasets are ana-
lyzed before being partitioned and distributed to the cluster.
Next, models are built independently, and then their predic-
tive performance is evaluated to select which models are
used in the ensemble.

to ensembles that generalize well; partitioning has a direct
impact on the contents of training sets used for building
the models that comprise the ensemble. We support two
partitioning methods, input- and output-based partitioning.

3.1.1. Input-Based Partitioning. this partitioning algo-
rithm divides the dataset into groups based on their sim-
ilarity in the input space. Each group includes observations
occurring in proximate portions of the feature space. To
simplify the partitioning process, we do not attempt to find
the optimal number of groups (clusters). The number of
groups is determined based on the size of the given dataset
and available computational resources, where several groups
may be collocated on the same physical machine.

Our framework can employ a variety of techniques to ac-
complish this objective, including locality-sensitive hashing
methods [15], [16], ball tree algorithms [17], and clustering
methods [18], [19] such as k-means. After the groups have
been established, data is dispersed across the cluster. How-
ever, it is important to note that all of these algorithms are
susceptible to the curse of dimensionality, i.e., when dimen-
sionality is too high the input space becomes increasingly
sparse and the Euclidean distances between all of the data
points are more or less indistinguishable [20].

We use dimensionality reduction techniques to deal with
high-dimensional datasets. Input features that contribute the
largest portion of the model’s explanatory power are identi-
fied and selected to represent the data; in general, this does
not have an appreciable impact on model performance [21].
Methods such as principal component analysis (PCA), corre-
lation analysis, least absolute shrinkage and selection oper-
ator (LASSO), and Random Forest ensembles can be used
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for dimensionality reduction. Regardless of the technique
used for dimensionality reduction, our framework provides a
uniform interface that emits 〈feature, importance%〉 pairs
for evaluation. Also note that selecting the groups/clusters
and performing dimensionality reduction both occur on the
guidance set before the entire dataset is ingested into the
cluster.

3.1.2. Output-Based Partitioning. here, our algorithm
aims to find the best split thresholds in the input space
to create regions with maximum similarity in the output
space. While our input-based partitioning builds groups
of similar multidimensional observations (based on input
features), this approach creates groups that ultimately lead
to similar model outcomes (sometimes referred to as label-
based partitioning).

We employ the C4.5 decision tree generation algo-
rithm [22], an extended version of ID3 (Iterative Di-
chotomiser 3) [23]. Briefly, the algorithm attempts to choose
split thresholds that maximize Kullback–Leibler divergence
(also known as information gain) [24] to produce branches
that are as homogeneous as possible. In other words, split
thresholds are chosen with the intent of reducing entropy in
the resulting partitions of the output space.

The algorithm is applied recursively on each region
until the desired number of partitions is reached. Once
complete, the resulting decision tree is pruned to remove
branches that ultimately were not useful in distinguishing
between outcomes. This partitioning method puts all of the
observations that lead to similar target values in a separate
subset, which in turn enables the construction of an ensem-
ble with models that are specialized for different areas of the
output space. The split thresholds are later used to determine
which models within the ensemble will likely make the best
predictions overall.

3.2. Independent Model Training

Once the dataset has been partitioned and distributed,
training individual models in parallel can begin. Our frame-
work has two components, a driver and several executors.
The driver’s inputs include the ensemble type (input or
output), the partitioning information generated during the
partitioning phase (e.g., centroids or split thresholds), and a
list of machines that host the training data. When the driver
starts, it transmits a copy of the partitioning information to
all machines in the cluster and then launches an executor on
each machine. The executor runs multiple training processes
in parallel on the host machine based on memory capacity
and number of cores, as well as the size of the training sets.
An overview of the training process is shown in Figure 2.

The training process begins by performing a correlation
analysis and building pilot models on the local datasets
to help pinpoint influential features. This information is
useful both for building ensembles and providing diagnostic
information. In some cases, datasets may exhibit collinearity
where some features can be predicted linearly by others
with a great degree of accuracy. Depending on the learning

algorithm, this can produce noise that leads to decreased
prediction or classification performance, so we optionally
remove such features during this phase.

The framework supports a variety of machine learning
models implemented as plugins that can be configured by
the user on a case-by-case basis. We rely on configurable k-
fold cross-validation (k = 10 by default) to assess model
performance and iteratively tune each model’s hyperpa-
rameters using general guidelines specific to the particular
learning algorithm. Our current implementation supports the
following machine learning models:

• Linear Regression
• Decision Tree Regression
• Random Forests
• Gradient Boosting
Note that the individual models themselves can be en-

sembles as well. Adding new models to the framework is
straightforward and requires implementing a single inter-
face.

Once local training is complete, serialized copies of the
models that exhibited the best performance are checkpointed
to the disk as a safeguard against outages or recoverable
failures. Since the trained models are quite small, they are
also broadcast to the rest of the cluster. This consumes a
minimal amount of bandwidth and is leveraged during the
ensemble creation process to build meta-models that achieve
higher performance than the individual models. Note that
this step happens asynchronously as training proceeds across
the entire cluster. If a training process fails, the executor
first retries executing it and then if the failure persists stores
detailed logs to help diagnose parameterization or system
issues.

3.3. Building the Ensemble

Once local training is complete, the final step of our
methodology produces an ensemble using meta learning
techniques, where models are trained on other models’
outputs. These meta models serve as a gate function that
determines which model(s) should be used under particular
conditions. Our framework leverages stacking to produce the
final ensemble.

The base ensemble is constructed by using specialized
models that learn local patterns and trends, but none of these

Driver Node

Executors

Ensemble Type

Partitioning Data

Machines in Cluster

Trained
Model

Broadcast

Figure 2: Overview of the training process. Inputs to the
driver include the ensemble type, partitioning data, and
list of machines in the cluster. The driver transmits this
information to the executors that schedule and manage
training processes.
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models will be able to efficiently capture global trends and
the patterns that stretch over multiple regions of the feature
space. Our first improvement to baseline performance is
allowing models that are specialized for neighboring regions
to vote or average their predictions to provide a single
accurate prediction for a given observation coming from one
particular part of the feature space.

After building the specialized models for the base en-
semble, new training sets are needed to build the meta
models. We create a training set for each region of the
feature space by applying all of the specialized models
to the particular region’s data for making predictions. To
avoid overfitting, the region’s entire dataset is not used for
training specialized models. New training subsets are created
in parallel by using the machines that host the original data.
Subsequently, a training process is collocated with the new
datasets to build the meta models in parallel independently.

Relying on stacking incorporates the insights of the
specialized models to build a meta-learner (referred to as
a stacked model) for each region. Stacking builds a model
on the predictions of the other models to provide a pre-
diction that is more accurate than any of the combined
predictions [25]. In this approach, several different learning
algorithms are combined (such as linear regression, decision
trees, and so on) to create the meta models. Stacking has
been applied in several domains of machine learning and
shown an improvement of prediction accuracy and general-
ization [26], [27], [28].

4. Experimental Evaluation

Herein we describe the experiments we conducted to
assess the effectiveness of our methodology for learning
from voluminous datasets.

4.1. Experimental Setup

To evaluate Concerto, we used a real-world climate
dataset obtained from the National Oceanic and
Atmospheric Administration North American Mesoscale
Forecast System [29]. This dataset includes readings of
surface pressure, surface temperature, snow cover, snow
depth, relative humidity, wind speed, etc. The dataset
contained 3,532,225,177 observations with 59 features. Of
the overall set of features, 58 were used as input features and
the precipitable_water_entire_atmosphere
feature was chosen as our target to predict. The evaluation
dataset was divided into test and training data. The test
dataset contained 5 million observations and was used to
assess the models, while the remaining data were used to
train the global model and the ensembles.

To build the global model and ensembles, we used 126
machines running Fedora 30: 34 Six-Core Intel Xeon E5-
2620v3; 16GB RAM, 42 Eight-Core Intel Xeon E5-2620v4;
16GB RAM, and 50 Eight-Core Intel Xeon E5-2620v4;
64GB RAM.

4.2. Comparison: Apache Spark and MLlib

To serve as a point of comparison with our approach,
we used Apache Spark to build distributed machine learning
models for our dataset. We call these global models. Spark
was deployed on our 126-machine test cluster alongside
Hadoop Distributed File System (HDFS) with the replication
factor set to 3. Using 12 external machines to stage the data
into the cluster took 168 minutes.

We applied all four machine learning algorithms on
the entirety of the training data with Spark. While we
could successfully train a global distributed model on the
entire datasets using linear regression and basic decision
tree regression, we were unable to do so with random forests
or gradient boosting. While training the random forest, we
observed that Spark attempted to shuffle large amounts of
data that caused many of the nodes to fail because there
was no space left on the disk (250 GB was the maximum
amount of free space available on some of the machines in
our cluster after accounting for the dataset storage, which is
still a large amount of headroom).

Similarly, the gradient boosting training process never
completed because nodes that ran out of space would trigger
Spark’s fault tolerance measures to recompute the entire
RDD lineage chain. It is worth noting, however, that gradient
boosting is a sequential algorithm and not particularly well-
suited for distributed learning, especially with a large num-
ber of trees. Table 1 summarizes the experimental settings
used to train the global model.

TABLE 1: Configurations for the all-encompassing models
built with Spark. *Indicates training did not complete.

Algorithm Depth Max. Iterations / Trees
Linear Regression N/A 10,000

Decision Trees 30 1

Random Forests* 9 1,000

Gradient Boosting* 4 1,600

Note: Since we could train the linear regression and
the decision tree models on our dataset, we used them as
our main points of comparison. In the interest of fairness,
we determined these parameters through extensive experi-
mentation with the intent of demonstrating the best possible
performance of Spark. These models are distributed and
were configured to create enough decision trees to ensure
the entire cluster was fully utilized.

4.3. Building the Ensembles

We created an input and output ensemble to test both of
our partitioning strategies. To create the input partitions, we
used the k-means algorithm on 20% of the data to create
1,000 clusters. It took 12 minutes to calculate the centroids
and 68 minutes to disperse the data. The centroids were used
as the basis for the gate function of the ensemble.

For building the output ensemble, we partitioned the data
based on the similarities in the output space. The partitioning
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algorithm was applied to 15% of the data and took 38
minutes to complete. In this case, split thresholds were used
to build the gate function for the ensemble. Distributing the
data across the cluster took 46 minutes.

Unless otherwise noted, we used the same machine
learning algorithms and parameters as the Spark cluster.
Concerto manages orchestrating and leveraging the ensem-
bles. The size of these ensembles is constrained by two
competing pulls, parallelism and regularization: increasing
the degree of parallelism reduces training times, but in-
creasing model count beyond a certain point adds more
complexity. The number of constituent models within the
ensemble also depends on two additional factors: (1) the
data and (2) the type (input or output) of ensemble being
built. However, if the size of the ensemble is the same the
“systems” implications are similar. Our experimental evalua-
tion assesses the performance implications of these different
choices. The majority of our benchmarks include results for
ensembles with 1,000 models (input ensemble) and 5,357
models (output ensemble), which provided the best balance
of speed and accuracy. However, a direct comparison (1,000
models vs. 1,000 models) is also provided in Section 4.9.

4.4. Training Times, CPU Usage, and Scalability

We contrasted the training time of all-encompassing,
distributed (global) models built with Spark against two
ensembles of different sizes for our two partitioning types.
Here, training time does not include time spent ingesting
and storing the dataset (168 minutes with Spark and HDFS,
80 minutes for the input ensemble, and 84 minutes for
the output ensemble). Table 2 contains the results for the
linear regression model; linear regression is straightforward
to parallelize with minimal communication, so in this case
the global model is faster to build.

TABLE 2: Training times for an all-encompassing linear
regression model built with Spark compared against input
and output ensembles trained with our framework.

Configuration Training Time (Hours)
Spark (Global) 0.6

Ensemble (1000 Models) 1.7

Ensemble (5357 Models) 4.4

Note that while the global linear regression model out-
performs our approach in terms of training time, it is one of
the simplest models available and accuracy will generally
be lower than other approaches. See Section 4.7 for an
evaluation of prediction accuracy.

In the case of decision trees, the benefits of our method-
ology are much more apparent; Table 3 compares decision
tree training times.

Figure 3 shows cumulative CPU utilization for the deci-
sion tree ensembles; in these results, steeper curves indicate
better resource utilization (high CPU usage). Intuitively, the
ensemble with more models also took longer to train. In fact,
due to the load balancing characteristics of our approach, we

TABLE 3: Comparison of decision tree training times.

Configuration Training Time (Hours)
Spark (Global) 12.1

Ensemble (1000 Models) 0.4

Ensemble (5357 Models) 2.1

could observe training times scaling up/down with changes
to the number of models as well as the number of machines
in the cluster.

Figure 3: Cumulative CPU usage of the cluster for decision
tree models. Steeper curves indicate higher CPU usage,
while flatter curves indicate portions of the job that are
likely I/O- or memory-bound. Here, the number of models
in the ensembles trained by Concerto have a direct impact
on training time.

Finally, Table 4 compares training times for gradient
boosting. While the algorithm takes the longest amount of
time to train, we found that it also usually provided the best
prediction accuracy (see Section 4.8). Note that in this case,
the global model built with Spark did not finish executing
after running for several days.

TABLE 4: Comparison of gradient boosting training times.

Configuration Training Time (Hours)
Spark (Global) Did not Complete

Ensemble (1000 Models) 26.1

Ensemble (5357 Models) 45.5

Based on these results, our approach has a clear advan-
tage when the algorithm is not trivially parallelizable.

4.5. Disk and Network I/O

One key advantage of our approach is that it requires
minimal I/O: intermediate data is not written to the disk,
and while the partitions incur initial read costs, once they
are resident in memory they will not have to be swapped out.
This avoids expensive write operations. Figures 4-(a) and (b)
compare the disk I/O usage of the two approaches (global vs.
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(a) Disk I/O: Linear Regression (b) Disk I/O: Decision Tree

Figure 4: Comparison of Disk I/O (including both reads and writes) between the global model built with Spark and our
ensembles for linear regression and decision trees. The ensembles read the dataset once, but do not require significant
additional I/O operations.

ensemble-based). The high disk I/O exhibited in the Spark
implementation includes reading from and writing to HDFS
as well as any flushing of RDDs to the disk that may occur
when nodes run out of main memory or checkpoints must
be stored. We hypothesize that the primary reason we were
unable to train a global random forest or gradient boosting
model on the dataset using Spark is due to the higher I/O
usage patterns shown here. Also note that the ensembles read
the dataset once, but do not require significant additional I/O
operations.

Figures 5-(a) and (b) compare network I/O measured in
terabytes. The difference here can be primarily explained
by the minimal amount of communication required by our
framework; apart from initial partitioning information and
broadcasting serialized model instances, very little coor-
dination between nodes in the cluster is necessary. Vari-
ation between the different ensembles is primarily due to
differences in the serialized model sizes and complexity.

Minimal communication can be particularly beneficial when
the links between nodes in the cluster incur high latency
or are intermittently unreliable, which is often a reality in
cloud deployments that are geographically distributed. In
the case of Spark, a substantial amount of data must be
transferred, likely due to training synchronization and the
communications between HDFS and Spark.

4.6. Memory Usage

We tracked memory usage across the entire cluster
during the training process. In the case of Spark, a large
amount of memory was pre-allocated and then grew over
time as RDDs were cached in memory. On the other
hand, with Concerto, memory usage varied to a greater
extent depending on the resource profiles of the training
processes. This allows memory usage to decrease over time
as training processes complete, potentially enabling other

(a) Network I/O: Linear Regression (b) Network I/O: Decision Tree

Figure 5: Comparison of Network I/O (including both reads and writes) between the global model built with Spark and our
ensembles for linear regression and decision trees.
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processes to make use of the memory. Table 5 outlines
the maximum and average memory usage observed on the
cluster for each configuration. As usual, the input ensemble
contained 1,000 models and the output ensemble contained
5,357 models for these benchmarks, which helps explain
the difference in memory consumption.

TABLE 5: Memory usage exhibited while training linear
regression models.

Configuration Max. Memory (GB) Avg. Mem. (GB)
Spark (Global) 965.14 858.18

Ensemble (1000 Models) 1065.27 638.36

Ensemble (5357 Models) 1769.85 1132.54

Similarly, Table 6 outlines the memory usage profile of
the two systems while training decision tree models.

TABLE 6: Memory usage exhibited while training decision
tree models.

Configuration Max. Memory (GB) Avg. Mem. (GB)
Spark (Global) 3490.47 3093.66

Ensemble (1000 Models) 1136.52 621.13

Ensemble (5357 Models) 430.05 262.80

In the case of the output ensemble, memory usage is
lower due to the smaller partition sizes resulting in smaller
models, but at a larger quantity (5,357). Since training is
fairly fast, long-term memory consumption is low.

4.7. Prediction Accuracy

We measured the mean squared error (MSE), the aver-
age squared difference between estimated values and actual

values, by making predictions with the global model and
our ensembles on test data that was not used in the training
processes. Figure 6 illustrates the prediction error measured
in MSE for linear regression and decision tree models. In
most cases, the predictions made by the input and output
ensembles were more accurate than the global model; the
global model is trained on the entire dataset and may not
always be able to efficiently capture local patterns, while
our methodology can do so by leveraging multiple models.

However, with the linear regression models, the pre-
diction accuracy of the input ensemble was worse. We
hypothesize that the training sets produced by partitioning
the data based on the similarities in input space include non-
linear relations that were poorly modeled at the local level.
That is, patterns associated with different extents of input
space could not efficiently be captured by the simple linear
regression models.

Note that these results do not include the ensembles that
featured gradient boosting models; since a direct comparison
with the global model was not possible, gradient boosting
results are provided in the next section.

4.8. Evaluating Ensembles: Input vs. Output

Due to the serial nature of the gradient boosting algo-
rithm and the high amount of inter-node communication
and disk I/O, we were unable to build a global model
across the dataset using Spark. However, both our input
and output ensembles with models trained using gradient
boosting exhibited substantially better performance in terms
of predictive accuracy; the best prediction MSE we achieved
with Spark using decision trees was 3.75, whereas the MSE
achieved with gradient boosting ensembles was 1.20 and
1.55 for the input and output ensembles, respectively. While
the input ensemble achieved the highest prediction accuracy

(a) Linear Regression (b) Decision Tree

Figure 6: Mean squared error (MSE) evaluation of the predictions made by the global models and ensembles using linear
regression and decision trees. Note the difference in scales; the models built with decision trees achieve higher prediction
accuracy (lower MSE) for all three approaches.
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(a) Disk I/O: Gradient Boosting (b) Network I/O: Gradient Boosting

Figure 7: Disk and Network I/O with the gradient boosting ensembles.

in terms of MSE, both results are better than the global mod-
els and ensembles built with linear regression and decision
trees. This result emphasizes one of the main advantages
of our methodology: when a serial or difficult-to-parallelize
machine learning algorithm offers the best performance for
a particular dataset, it can still be trained in parallel and
leveraged by our framework.

Figure 7 demonstrates the disk and network I/O of the
gradient boosting ensembles. Both results closely mirror the
performance observed for linear regression and decision tree
ensembles. On the other hand, ensembles that leveraged
gradient boosting had a higher upper bound for memory
usage and used more memory on average, as shown in
Table 7.

TABLE 7: Memory usage exhibited while training gradient
boosting models.

Configuration Max. Memory (GB) Avg. Mem. (GB)
Ensemble (1000 Models) 1814.62 1153.43

Ensemble (5357 Models) 2058.20 1425.17

4.9. Systems Implications of Ensemble Sizes

As noted previously, we chose the best possible models
and meta models for Spark and Concerto. Specifically, we
chose ensembles of 1,000 and 5,357 models to balance
training speed and prediction accuracy. While higher pre-
diction accuracy with our approach is certainly possible,
it comes at the cost of timeliness and rapidly approaches
the point of diminishing returns. However, from a systems
perspective, the number of models per ensemble does not
have a significant impact on performance metrics; given a
particular number of features, labels, dataset size, and model
configuration, the disk I/O, network I/O, and CPU usage
will all exhibit behavior similar to our previous benchmarks.
Figure 8 demonstrates this by repeating our previous bench-
marks using 1,000-model input and output ensembles with
decision tree regression (linear regression models produced
similar results as well, but are omitted for brevity).

(a) CPU
(b) Disk I/O

(c) Network I/O

Figure 8: CPU, Disk I/O, and Network I/O benchmarks re-run with 1000-model decision tree input and output ensembles.
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5. Conclusions and Future Work

Our methodology, Concerto, merges the predictive
power of ensembles and meta models generated via stacking
while relying on data partitioning methods to maximize the
insights that can be gained in a timely fashion.

While partitioning is used by several algorithms to learn
from data, our methodology exploits these methods to divide
the problem into smaller pieces that are sufficiently simple
to learn from quickly (RQ1). By relying on independent
models using manageable subsets of the data, our method-
ology allows leveraging and combining desirable algorithms
to exploit their individual strengths for solving a particular
problem in parallel (RQ3). We compared our methodology
with a well-known distributed computation framework and
were able to build (1) ensembles with higher predictive
accuracy in many cases than a single distributed model, and
(2) ensembles at scales that are not feasible with a single
model, even with a machine learning algorithm that does
not parallelize well (RQ2).

Our future work will focus on developing new parti-
tioning methods that are optimized for domain-specific data
types and adding support for GPU-based training. To make
our work more broadly applicable, we also plan on adding
support for lightweight distributed computations.
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