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ABSTRACT
Discrete event simulations model the behavior of complex,
real-world systems. Simulating a wide range of relevant
events and conditions naturally provides a more accurate
model, but also increases the computational workload as-
sociated with the simulation. To manage these processing
requirements in a scalable manner, a discrete event sim-
ulation can be distributed across a number of computing
resources. However, individual tasks in the simulation are
stateful, and therefore require inter-task communication and
synchronization to produce an accurate model. This prop-
erty not only complicates the orchestration of the discrete
event simulation in a distributed setting, but also makes
providing reliable, fault-tolerant execution a challenge, es-
pecially when compared to conventional distributed fault
tolerance schemes.

In this paper, we propose an autonomous agent that pro-
vides fault tolerance functionality for discrete event simu-
lations by predicting state changes in the simulation and
adjusting its fault tolerance policy accordingly. This allows
the system to avoid negatively impacting overall execution
times while preserving reliability guarantees. To underscore
the viability of our solution, we provide benchmarks of a pro-
duction discrete event simulation that can sustain failures
while running under the supervision of our fault tolerance
framework.
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1. INTRODUCTION
The longer a software process runs, the more likely it is

to experience a hardware or software failure. This fact is
only exacerbated by the trend towards distributed, multi-
core architectures that take advantage of the vast processing
power found in today’s commodity hardware. In a cloud
environment, each additional unit of processing involved in
a task increases the overall probability of a failure occurring.
Therefore, in the modern computing landscape, failures are
an issue that must be expected and dealt with rather than
simply avoided or ignored [25].

Discrete event simulations are one type of long-running
computation that can benefit greatly from a distributed ap-
proach. Briefly, a discrete event simulation can be described
as a model of a system that produces output based on how
a series of events unfold. These simulations are generally
computationally expensive, so dividing the workload among
a number of computing resources is beneficial in multiple
ways: outputs can be generated faster, more parameters
can be explored, and additional iterations of the simulation
can be run to verify output quality. However, these perfor-
mance gains come at the expense of additional complexity
through increased communication and synchronization re-
quired between distributed components. As more compo-
nents are added to a system and executed across a diverse
set of computing resources, the likelihood of a failure also
becomes much higher.

In this work, we outline the design of an autonomous
fault tolerance agent to oversee the execution of distributed
discrete event simulations. Unlike conventional distributed
fault tolerance approaches, our system must cope with con-
stantly changing, stateful computations and ensure global
consistency throughout the system in the event of a failure.
This requires a number of system-level optimizations along
with reliable prediction mechanisms that enable a dynamic,
proactive approach to providing fault tolerant execution for
our subject simulation.

To distribute the simulation across a cluster, we have ex-
pressed its units of computation as a set of iterative, stream-
ing MapReduce phases. In each phase, Map tasks perform
their individual stochastic operations and maintain local
state information that can be collected at runtime in the
form of checkpoints. We rely on an adaptive strategy that
determines when and how checkpoints should be requested
in order to reduce the amount of duplicate work and over-
head incurred from state collection. This is made possible
by forecasting state changes and having the system plan ac-
cordingly.



1.1 Research Questions
Creating a fault-tolerant, distributed implementation of a

discrete event simulation that requires stateful, interdepen-
dent tasks led us to pose a number of research questions that
we have addressed in this paper:

1. Can we incorporate support for failure resilience while
minimizing overheads? Since failures are infrequent,
our goal should be to achieve fault tolerance without
introducing unacceptable overheads into the system.

2. Can these overheads be minimized while also retaining
the ability to cope with multiple, concurrent failures,
which can either be permanent or transient?

3. Can failures be detected efficiently? Simply executing
duplicate tasks in parallel is not an adequate scheme
for dealing with failures in our system, so active detec-
tion of failures is required.

4. Will simply collecting state information from individ-
ual tasks be efficient means to provide fault tolerance?
How can state collection be optimized?

5. In the event of a failure, can we minimize the amount
of work that will need to be duplicated?

1.2 Contributions
Our contributions in this work stem from: (1) the use of a

learning-based, adaptive checkpointing strategy, (2) orches-
tration using a distributed stream processing engine, (3) the
ability to handle multiple concurrent failures, both persis-
tent and transient, (4) the verification of correctness of the
recovery scheme, and (5) the amount of overhead introduced
by our scheme.

1.3 Paper Organization
The remainder of the paper is organized as follows: in the

next section, an overview of our parallel discrete event simu-
lation and its components is provided. In Section 3, our fault
tolerance strategy is detailed, including the components that
are responsible for detecting and handling failures. Section 4
provides information about optimizations we developed for
handling and transmitting state in the system, followed by
Section 5, which explains how forecasting future simulation
conditions allows our system to make efficient fault toler-
ance decisions. Section 6 includes performance benchmarks
of recovery operations and overhead in the system. Section 7
surveys related work dealing with fault tolerance in discrete
event simulations, and Section 8 outlines our conclusions
and future work in this area.

2. SYSTEM ARCHITECTURE
Our system is designed to separate concerns between two

components: the cloud runtime, which handles orchestration
of the simulation, and the simulation itself. This separation
allows different discrete event simulations to be run within
the system, provided that they conform to our wire format
specification. For this study, we utilized the Granules Cloud
Runtime [24] for coordinating distributed activities within
the system, and the North American Animal Disease Spread
Model (NAADSM) [17] as our subject discrete event simu-
lation.

2.1 Granules
Granules [24] is a distributed stream-processing frame-

work that allows computations to be expressed using the
MapReduce paradigm or as directed, cyclic graphs. The
framework handles deploying, scheduling, and orchestrating
computations on clusters of machines or in the cloud. Com-
putations can be scheduled to run when data is available or
at regular intervals, with a configurable number of execution
iterations. Since computations can execute multiple times,
it is possible to build state over the course of execution.
Granules has been employed in several areas of study, in-
cluding bioinformatics, brain-computer interfaces [12], clus-
tering [11], and scientific data storage [22].

While Granules is implemented in Java and natively sup-
ports Java-based computations, the framework also provides
bridging functionality that allows computations to be writ-
ten in C, C++, Python, and R. NAADSM is written in C
and uses this functionality to communicate directly with the
Granules runtime. Granules is an open source effort, avail-
able at http://granules.cs.colostate.edu.

2.2 NAADSM
NAADSM [17] is an epidemiological model of disease out-

breaks in livestock populations developed jointly by the US
Department of Agriculture, the Canadian Food Inspection
Agency, Colorado State University, the University of Guelph,
and the Ontario Ministry of Agriculture, Food, and Rural
Affairs. It has been applied to studies of several diseases
including foot-and-mouth disease [26], avian influenza [15],
and pseudorabies [28].

NAADSM is a Monte Carlo model: a simulation is run
many times with each run representing one possible way that
events could occur in a disease outbreak, which contributes
to an overall picture of the probability distributions of the
output variables. This means that simulations are generally
run many times, and due to their processor-intensive na-
ture can benefit greatly from a parallel, divide-and-conquer
approach spread across multiple computing resources.

Discrete event simulations are used in a wide variety of
problem domains, but generally have three main compo-
nents in common: a set of state variables, a list of events,
and a global clock [14]. The basic adaptation of NAADSM
to run across multiple processes in a distributed environ-
ment managed by Granules required: (1) a field to indicate
which farms in the simulation are managed by individual
NAADSM instances, (2) addition of a bridge object that
translates events between Granules and NAADSM, and (3) a
simulation day barrier for synchronization in the NAADSM
main event loop. Apart from these necessary modifications,
we strived to make as few changes to the NAADSM codebase
as possible.

In this study, we used a set of NAADSM directives, called
a scenario, that simulated an outbreak of foot-and-mouth
disease (FMD) set in Kansas, USA. The scenario consisted
of 660,000 farms, which is the approximate number of FMD-
susceptible farms in the 12 Midwest US states. Nine farms
were infected initially and the disease was spread by air-
borne, direct, and indirect contact. The scenario’s scale and
extreme parameters were selected specifically to increase its
computational footprint; on a single machine in our test
cluster, the scenario takes about 18 hours to execute.
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Figure 1: The network layout for our distributed
discrete event simulation framework.

2.3 Test Environment
The benchmarks described in this study were carried out

on a cluster of 16 HP DL160 servers, each equipped with a
2.4 Ghz quad-core Intel Xeon processor, 12 GB of RAM, and
a 1000 Mb/s network interface. The Granules framework ran
within OpenJDK 1.7. Each machine in the cluster managed
four Worker instances for a total of 64 Workers executing our
Midwest scenario in parallel, bringing the overall execution
time of the simulation down to under an hour. Without
debugging instrumentation used to produce the results in
this work, the execution time is approximately 30 minutes.

2.4 Parallelization Framework
A distributed execution of NAADSM across a cluster of

computing resources involves two primary components: a
Controller, which coordinates the global state of the simula-
tion, and multiple Worker instances, which are deployed to
each node in the cluster and are responsible for managing
individual instances of NAADSM. Figure 1 illustrates this
configuration. These two components are the backbone of
our discrete event simulation parallelization framework.

Internally, NAADSM is a set of code modules that pro-
duce and consume discrete events (e.g., movement of ani-
mals between two farms, or detection of a disease at a farm).
When running within Granules, a simulation is divided by
geography with each Worker managing a subset of farms
in the scenario. Events that may have effects outside of
a Worker’s territory are packaged and transmitted to the
Controller in a once-per-simulation-day step that acts as a
synchronization barrier across the Workers. After receiv-
ing global state information from each Worker instance, the
Controller broadcasts a single bundle of aggregate state out
to the Workers to mark the start of a new simulation day.
Compared to other cloud runtimes such as Hadoop [1] that
deal with largely stateless processes, the stateful nature of
this configuration is a challenge for both load balancing and
fault tolerance operations.

To balance load across the available resources in a cluster,
our system employs a dynamic split and merge strategy to
divide or consolidate Workers depending on changing load
characteristics. Due to the simulation day execution barrier,
it is critical to place load as uniformly as possible across all
the Workers in the system; the simulation can proceed only
after all Workers have completed their tasks, so a run of a
simulation day is only as fast as the slowest worker in the
resource pool.

Our parallelization framework is best suited for simula-
tions that have a spatial component that can be divided
into individual subregions managed by a Worker instance.
This includes atmospheric science [7], modeling object in-
teractions in space [19], and cosmology [31]. If a particular
feature of the framework is unnecessary for a given simula-
tion, (such as the synchronization barrier) it can be disabled
without affecting fault tolerance functionality.

These architectural decisions make the distributed orches-
tration layer highly adaptable to new types of simulations,
but also make each component instance a single point of fail-
ure; the loss of either the Controller or even a single Worker
prevents further progress of the simulation. Additionally, as
the number of computing resources involved gets larger, the
probability of a failure occurring becomes higher as well. To
deal with these failure scenarios we have introduced another
component, called the Speculator, which handles speculative
execution, failure detection, and recovery operations from
within the cloud runtime.

Unlike the speculative execution performed in implemen-
tations of MapReduce [8], our system requires transactional
semantics to ensure the consistency of global state across
the entire cluster during failures. Additionally, speculative
tasks are launched in MapReduce based on the identification
of stragglers, which are tasks that take an atypical amount
of execution time. The stochastic nature of our problem
leads to the development of execution hot spots that move
across different processing elements during the simulation,
precluding the use of execution time as a failure metric.

3. THE SPECULATOR
In our system, the Speculator is responsible for all ac-

tivities related to fault tolerance. This includes detecting
failures, launching new Workers, rolling the simulation back
to a consistent state, and managing resources through the
Granules API. The Speculator can also be used to suspend a
simulation, save its state to disk, and then resume execution
— even on completely different hardware.

Along with these fault tolerance features, the Specula-
tor also plays a role as an autonomous manager of system
events, deciding the frequency of system state collection and
allocation of resources that can be used by the Controller.
These decisions allow the Speculator to provide its services
without imposing a significant performance penalty on the
execution of the simulation.

One key aspect of our system architecture is that commu-
nication only occurs once per simulation time unit, which
is a simulation day in the case of NAADSM. This means
that querying a Worker and receiving a result is a two-day
process. Because of this constraint, the Speculator must
be highly proactive; simply reacting to events as they take
place is not sufficient due to the ever-changing state of the
simulation.

As a simulation progresses, global and individual state is



built during each simulated day. In the case of a failure at
any node, the simulation cannot progress any further be-
cause all nodes must report their global state before moving
on to the next day in the simulation. The challenges that
arise in this situation are twofold: detection of failures, and
failure recovery.

3.1 Failure Detection
Detecting failures requires a balanced approach; if the

Speculator does not identify a failed machine in a timely
manner, overall simulation throughput is reduced. Con-
versely, false positives needlessly delay simulation progress.
These factors make failure detection a challenging task for
the Speculator. Since Workers communicate with the Spec-
ulator and Controller on a regular basis, the absence of com-
munication may indicate a failed Worker. However, it is also
possible that the Worker is simply processing a particularly
complex part of the simulation. Additionally, a sound failure
detection system is not centralized; network segmentation
may cause a single central node that is monitoring the sys-
tem to mistakenly determine that an unreachable segment
of the network has failed. In this scenario, the nodes may
be reachable from another part of the network, so detec-
tion should be done from multiple locations in the network
topology.

To mitigate these issues, the components in our system
transmit small messages, called Heartbeats, to the Specula-
tor. Heartbeats are generated periodically by a background
process and contain system statistics, including load infor-
mation, CPU utilization, available memory, and disk activ-
ity. This information provides the Speculator with data to
monitor utilization on every node and make fault tolerance
decisions based on overall cluster usage.

When a node has not sent a heartbeat message after a con-
figurable failure timeout threshold, the Speculator assumes
it has failed. This assumption is confirmed by instructing
the Controller to also attempt to contact the node; if com-
munications with the Controller have been severed, then the
simulation will not be able to progress beyond the current
simulation day and the Worker must be relaunched on an-
other resource. In our tests, a heartbeat interval of 5 seconds
resulted in a single failure being detected in about 7.82 sec-
onds on average; Table 1 provides failure detection statistics
for up to eight machine failures.

Table 1: Failure detection with a 5-second heartbeat
interval

Failures Detection Time (s)

Mean SD

1 7.82 2.03

2 7.85 2.63

4 8.03 2.66

8 8.23 2.78

To detect the special case of a Controller failure, the Spec-
ulator ensures that: (1) the time of the last heartbeat mes-
sage from the Controller is greater than the failure timeout
threshold and (2) each Worker has submitted a state bundle,
signaling the end of the current simulation day. If the Con-

troller has not instructed the Workers to begin the execution
of the next day, then it has failed. The Speculator starts a
new Controller instance on a different node and transmits
the current system state information to it, resuming execu-
tion.

Finally, it is possible that the Speculator itself experiences
a failure. Due to the publish-subscribe design of the Gran-
ules framework, multiple instances of the Speculator can be
started transparently and operate in parallel; if a failure is
detected, the available Speculator processes elect a leader
to handle it. This property also means that Speculator in-
stances can transparently enter and leave the system at any
time during execution; as long as one Speculator is available,
then failures can be dealt with.

3.2 Failure Recovery
Workers in our system maintain both local state and global

state. Global state information is exchanged during each
new simulation day, but local state is only used at the indi-
vidual Worker level. With no fault tolerance considerations,
this leads to an unrecoverable simulation in the event of
a Worker failure; there is no way of re-generating the local
state necessary for a different node to take over for the failed
Worker.

To cope with the possibility of a Worker failure, local state
information must be also be shared; upon request, this infor-
mation can be bundled by individual Workers and sent to the
Speculator as a checkpoint. A checkpoint contains enough lo-
cal state information for the Speculator to relaunch a Worker
process. Unfortunately, simply relaunching a Worker is not
enough to resume a simulation; all Workers must be execut-
ing the same simulation day, so the entire simulation must
be rolled back to a consistent state. A rollback will place the
simulation at the most recent point in time that the Specu-
lator had a checkpoint for each worker in the system. This
collection of all distributed state information in the system
at a given point in time is called a snapshot. Rollback op-
erations are applied in terms of snapshots available to the
Speculator.

Further complicating failure scenarios, there is no guar-
antee that the number of active Workers will stay constant
during the execution of the simulation; in fact, it is highly
likely that there will be a different number of active Workers
at any point in time due to the system’s dynamic splitting
and merging functionality for load balancing. This means
that the Speculator must also start up or suspend the ap-
propriate number of Worker instances during a rollback op-
eration.

Since the Speculator monitors the nodes’ system status
information and the simulation state as well, it can reason
about what information it will need to provide fault toler-
ance without impacting the overall performance of the sys-
tem. For example, given a particular livestock disease, the
simulation may progress rapidly and then slow down as the
disease spreads and becomes more computationally expen-
sive. Figure 2 illustrates this situation, showing execution
times in a 64-Worker simulation run of our Midwest sce-
nario. In the early stages of a simulation, the Speculator
does not need to request checkpoints frequently because a
restart of the entire simulation would have a minimal im-
pact on overall execution time. This property makes set-
ting a hard “checkpoint interval” inefficient, and lead us to
develop a fault tolerance component designed around mak-
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Figure 2: Per-day execution time of a 64-Worker
Simulation of foot-and-mouth disease in the Mid-
west USA.

ing intelligent, autonomous decisions about when and how
checkpoints should be collected.

Giving the Speculator the ability to request checkpoints
at specific times during the simulation allows for novel fault
tolerance approaches that balance recovery speed and sys-
tem load. The Speculator can also accept user-defined pa-
rameters that provide additional constraints on how fault
tolerance operations are carried out; a user may need re-
sults within a given time frame, or want to guarantee that
lost execution time due to failures does not exceed a specific
threshold.

4. CHECKPOINT OPTIMIZATIONS
Checkpoints are used for two primary purposes in our sys-

tem: load balancing and fault tolerance. As one might ex-
pect, the amount of state information in a simulation tends
to grow over the course of execution, with the most growth
seen during highly-complex events. We have observed that
the most CPU-intensive portions of a simulation are also
accompanied by a growth in checkpoint sizes; Figure 3 illus-
trates this trend in our Midwest scenario.

Given a 64-Worker run of the simulation, individual check-
points of about 8 MB will result in 512 MB of data being
sent to the Speculator at a time, easily saturating its net-
work interface. This IO-bound operation makes building a
complete snapshot of the simulation costly, and causes de-
lays while the Workers transmit their state information. De-
creasing the size of these checkpoints allows the system to
collect state information more frequently, which reduces the
amount of simulation progress lost in the event of a failure.
To better utilize resources at the Worker level, we moved
state transfer operations to a separate thread to help inter-
leave computation and IO operations. We also implemented
two approaches to reduce the overall size of messages being
sent in the system: transparent compression, and dynamic
patching. Both of these optimizations do not require modi-
fication of the discrete event simulation.
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Figure 3: Checkpoint size (in MB) as a simulation
progresses.

4.1 Transparent Compression
Checkpoints consist of several data structures serialized to

a binary format. In most cases, a simple translation of in-
memory data to serialized form does not produce the small-
est checkpoints possible. Therefore, we added a new feature
to the Granules cloud runtime, called Transparent Compres-
sion, that compresses and decompresses information as it is
sent and received. This framework allows client applications
to take advantage of a number of compression algorithms
without needing to write any code; events are automatically
compressed before they are sent across the network, and the
decompressed when they reach their destination. For event
payloads that would not benefit from compression, the func-
tionality can be toggled at runtime.

We utilized the Java JDK implementation of the DE-
FLATE algorithm [10] to compress our checkpoints, which
provides a balance of speed and output file sizes. Since our
simulation is highly CPU-bound, we favored a fast algorithm
to help reduce the amount of time spent on activities orthog-
onal to simulation progress. Table 2 provides a summary
of the compression ratios achieved and their computational
cost using the default compression settings. While the 1 MB
checkpoints were not highly compressible, the 4 and 7 MB
checkpoints achieved a compression ratio of 0.35 and took
about 65 ms per megabyte to create.

Table 2: Checkpoint compression evaluation, aver-
aged over 1000 runs.

Checkpoint Compression Compression

Size (MB) Ratio Time (ms)

Mean SD Mean SD

1 0.90 0.04 8.38 2.19

4 0.35 0.002 262.88 32.87

7 0.35 0.002 458.95 7.21



4.2 Delta Checkpoints
At a given point in time, the current state in a discrete

event simulation simply represents how a sequence of events
has unfolded. The progression of these events causes state
changes in an iterative fashion, meaning each checkpoint
in our system has some common attributes with previous
checkpoints. To exploit this property, we created delta check-
points: checkpoints that contain the binary differences from
the last checkpoint. This enables our system to “patch” an
old checkpoint to produce an up-to-date representation of
state in the simulation.

A number of algorithms have been developed for generat-
ing binary patch files, such as VCDIFF [20] and bsdiff [27],
which are frequently used in the distribution of software:
rather than transmitting an entirely new version of a soft-
ware binary, a small patch can be used to update an older
version of the software. For this work, we created a native
Java implementation of bsdiff due to the relatively small
patch files it produces. bsdiff has been employed in a num-
ber of software products, and, notably, was used for deploy-
ing quick, frequent updates to users of Google’s Chrome
browser.

One key step in the process of creating a bsdiff patch is
applying a suffix sorting algorithm on the original source
file; the reference implementation of bsdiff uses Larsson and
Sadakane’s qsufsort [21]. Our implementation, however, pro-
vides a simple interface for changing the sorting algorithm
at runtime. Different suffix sorting implementations tend to
perform better on different types of data, and since execu-
tion time is very important in our system we benchmarked
a number of suffix sorting algorithms from the jSuffixArrays
library [4] on our checkpoint files. The results of this bench-
mark can be seen in Table 3, which lead us to choose the
deep-shallow sorting algorithm [23] for our particular delta
checkpoints.

Table 3: Suffix soft comparison, executed 100 times
on various 7 MB checkpoint files.

Sorting Sort Time (ms)

Algorithm Mean SD

qsufsort 2175.24 37.03

divsufsort 1223.67 19.57

SAIS 1989.67 9.84

deep-shallow 738.12 8.00

To further speed up the delta checkpoint creation process,
we replaced the bzip2 compression used in bsdiff with the
same Java implementation of DEFLATE used to compress
our standard checkpoints. While bzip2 offers better com-
pression ratios, it also tends to consume more processing
time. Table 4 summarizes the delta checkpoint sizes and
their creation times.

Ultimately, there are tradeoffs associated with each of our
checkpointing methods. Small checkpoints generally do not
need further compression or patching. Larger checkpoints
that are created during fast-executing parts of the simu-
lation benefit most from compression; the compressed files
save network bandwidth and can be generated quickly. Dur-

Table 4: Delta checkpoint generation, averaged over
1000 runs.

Checkpoint Delta Creation

Size (MB) Size (KB) Time (ms)

Mean SD Mean SD

1 38.66 3.53 517.26 79.07

4 116.01 4.16 1037.43 36.57

7 126.40 9.72 1579.68 56.48
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Figure 4: Per-Worker checkpoint sizes for each
checkpointing strategy.

ing the longest-running portions of the simulation, delta
checkpoints enable the system to collect state information
frequently to mitigate the large amount of lost processing
time a failure would cause. Figure 4 illustrates the size
differences between uncompressed, compressed, and delta
checkpoints. These options give the Speculator flexibility in
its state collection operations to choose an approach that is
most appropriate for the current simulation environment.

5. FAULT TOLERANCE POLICY
The Speculator has a number of options for providing fault

tolerance at its disposal, each with their own tradeoff space.
How and when the Speculator requests checkpoints ulti-
mately determines the performance impact of our fault tol-
erance functionality and its scalability as more Workers are
added. While thresholds can be set to guide the Speculator’s
choices, hard rules tend to be brittle and ineffective when
faced with different simulation and disease types. To provide
a flexible model for determining the appropriate checkpoint-
ing policy, we predict the per-day execution time of the sim-
ulation, as well as the cost of generating a checkpoint. These
future costs can then be evaluated against the likelihood of
failures to produce a fault tolerance strategy.
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Figure 5: Prediction-based checkpoint policy
changes over time. Days that checkpoints were re-
quested on are indicated by a vertical line.

5.1 Predictions: Artificial Neural Networks
Since execution times in our simulation tend to exhibit

non-linear patterns, we utilized an Artificial Neural Network
(ANN) from the Encog Machine Learning Framework [18]
for predicting execution time and checkpointing costs. Col-
lecting a complete Snapshot of the system state requires at
least two simulation days; one to request the checkpoints,
and one to receive them. Due to this constraint, we trained
the neural network to predict three simulation days into the
future. This gives the Speculator time to choose an appro-
priate checkpointing strategy for upcoming events and in-
form Workers of when the checkpoints should be generated.
Figure 5 illustrates how and when the Speculator requested
checkpoints in an iteration of our Midwest scenario. The
policy ensured that no more than two minutes of execution
time could be lost at any point due to a failure. Parts of the
simulation that execute quickly required fewer checkpoints,
and if a failure occurs before day 67 the entire simulation
will simply be restarted.

The neural network can be trained with information from
two sources: system data in heartbeats collected by the
Speculator, and simulation parameters published by the dis-
crete event simulation. To provide the latter data points, we
created an additional message type in our communication
wire format that contains an arbitrary array of information
about the current state of the simulation. In our Midwest
scenario, parameters include variables such as the number of
herds managed by a Worker, the number of herds exposed
to the disease, vaccinations, and herds that have died. This
data does not have to be inspected or understood by the
Speculator, but can simply be fed into the neural network
for training and predictions.

While additional state information from the simulation is
not required to predict future execution times, the availabil-
ity of such information helps model how particular scenarios
will behave. Additionally, the trained neural network can
be serialized to disk and used in other installations of the
system to provide predictions without requiring a training

phase. The implementation of this functionality is entirely
optional; if publishing additional state variables is not pos-
sible, then our system can still provide its prediction-based
fault tolerance functionality.

6. PERFORMANCE EVALUATION
To evaluate the recovery performance and overhead in-

curred by our fault tolerance functionality, we designed and
executed a number of benchmarks. Due to the stochastic na-
ture of the simulation, we also implemented functionality to
support repeatable random runs so that the outcome of the
scenario could be held constant while other system variables
were changed. Each benchmark was also verified for cor-
rectness with the single-threaded, non-distributed version of
NAADSM.

6.1 Repeatable Random Runs
As a Monte Carlo simulation, NAADSM makes heavy use

of a global random number generator object. This compli-
cates performance evaluations because each iteration of the
simulation will produce different output. Further compli-
cating matters, simply choosing the same random number
seed for each iteration will still produce different output in a
distributed setting. We solved this problem by attaching an
independent random number stream to each farm, initial-
ized by combining a global seed and the farm’s unique ID.
All stochastic decisions pertaining to a farm are made us-
ing the farm’s own random number stream. Because farms
are not divided across Workers, this scheme will guaran-
tee the same sequence of events will occur, regardless of
how the simulation is split across computational resources.
This modification is not a requirement for running a discrete
event simulation in Granules, but allows us to hold simula-
tion variables constant while we benchmark fault tolerance
features.

6.2 Correctness
A distributed implementation of a discrete event simula-

tion, no matter how fast, is only useful if it produces correct
output. To ensure our optimizations did not compromise
the validity of simulation runs, we verified that the output
of each iteration matched that of an unmodified NAADSM,
farm-for-farm. Our regression test suite was composed of
several scenarios, run across a wide range of simulation sizes,
random number seeds, and load balancing patterns.

6.3 Recovery
After a failure has been detected, the Speculator must en-

sure that an adequate number of Workers is available and
then roll the simulation state back to the last snapshot. This
involves:

1. Stopping active Workers.

2. Starting and stopping resources to ensure an adequate
number of Workers is available.

3. Transmitting state to the Workers and Controller.

4. Waiting for Workers to decompress and apply new
state information.

5. Resuming execution of the simulation.



Table 5 outlines the amount of time it takes to recover from
a failure at different stages of execution in the simulation.
Recovery tends to require more time as checkpoint sizes in-
crease, although a considerable portion of the recovery time
can be attributed to latencies involved with global coordi-
nation in the recovery process. The results were gathered
from 100 simulation runs that experienced a failure on each
day noted.

Table 5: Failure recovery times at different stages of
a scenario’s execution.

Simulation Recovery Time (s)

Day Mean SD

50 5.502 1.36

100 7.320 1.43

150 7.684 2.02

200 10.403 2.78

250 9.621 2.79

300 7.981 2.13

350 7.783 2.08

6.4 Adaptive Checkpointing
To illustrate the advantage of using our adaptive check-

pointing strategy, we compared its fault tolerance overhead
with three simulation runs that had a static checkpoint in-
terval of 3 days and a fixed checkpoint type. Table 6 shows
the stark difference in overhead between a static and adap-
tive strategy.

Table 6: Comparison of adaptive and fixed check-
pointing strategies.

Strategy Overhead

Fixed, Standard 7.32%

Fixed, Compressed 5.8%

Fixed, Delta 5.98%

Adaptive 1.1%

This table also demonstrates that simply using a delta
strategy for the smallest possible checkpoint size does not
result in the lowest overhead of the fixed strategies. The
slight increase in overhead compared to compression is due
to the additional processing time required to compute delta
checkpoints.

6.5 Fault Tolerance Overhead
In order to evaluate the worst-case performance overhead

incurred from our fault tolerance system, we ran two iden-
tical iterations of our Midwest scenario: one with no fault
tolerance functionality enabled, and one with checkpoint re-
quests occurring every simulation day. Figure 6 shows the
per-day cost of collecting checkpoints in our system; the
overhead accounted for a five-minute increase in execution
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Figure 6: Shaded areas above the standard execu-
tion times represent overhead due to checkpointing
operations.

time, but the majority was during non-critical execution at
the end of the simulation. These costs can be easily avoided
by the Speculator through forecasting, as our benchmarks
have shown.

7. RELATED WORK
While our system primarily targets cloud or cluster de-

ployments, checkpointing also plays an important role in cre-
ating fault-tolerant grid environments. Recognizing the im-
portance of checkpointing schemes that dynamically adapt
to their environment, Chtepen et al. propose a number of
heuristics for determining a checkpoint interval [6]. Unlike
our system, their design does not require global state syn-
chronization, but it does account for estimated execution
time and checkpoint overhead to determine whether a job
should be allowed to checkpoint its state or not.

Failure detection research for distributed discrete event
simulations has produced several innovative solutions [9,29].
Gupta, Chandra, and Goldszmidt [16] postulate that the key
components of an effective failure detection mechanism are
completeness, speed, and accuracy. In the case of our frame-
work, completeness and speed are significantly relaxed in
favor of ensuring accuracy to avoid needless rollback opera-
tions. Only weak completeness is required for our purposes,
meaning all the components in the system do not need to
know when a failure has occurred, and the heartbeat interval
sets an approximate upper bound for detection times. These
factors and examples from the literature guided our decision
to keep the failure detection component of our framework as
simple as possible.

DACE introduces a failure model that tolerates crash fail-
ures and partitioning, while not relying on consistent views
being shared by the members through a self-stabilizing ex-
change of views [13]. This however may prove to be very
expensive if the number and rate at which the members
change their membership is high. In our case, the number
of workers for a given simulation day can vary because of



the split-and-merge operations being performed to balance
computational loads.

Rollback operations and speculative execution in discrete
event simulations have also been researched by Ortiz and
Jiménez [30]. In their work, a coordinator handles snapshot-
ting the simulation, but requires execution to completely
halt while the process is carried out; our solution interleaves
snapshot operations with other processing, and only requires
the simulation to stop if a failure has occurred.

The Recovery-Oriented Computing project, a joint re-
search effort of Stanford University and UC Berkeley, takes
the point of view that hardware and software failures and
user errors are inevitable. Therefore, making systems re-
cover quickly and automatically is at least as important an
endeavor as fixing problems [25]. The architecture and soft-
ware produced by the project hinges on 2 building blocks:
the micro-reboot, a selective restart of only the failed com-
ponent(s), and system-wide undo capability.

The practicality of micro-rebooting depends on three fac-
tors: an ability to locate the component at fault, a loosely-
coupled modular architecture, and an ability to store state
externally to the application. Our system shares some con-
cepts with this approach. It can locate failed components,
via heartbeats, although this is a simpler approach than
the Pinpoint software developed by the ROC project, which
watches all client requests in the system, and uses data
clustering to identify combinations of components likely as-
sociated with the failure to fulfill a particular request [5].
The system described in this paper has the kind of loosely-
coupled modular architecture needed to allow just one com-
ponent to restart, and it does store state externally to the
simulator (in checkpoints held by the Speculator). However,
the ROC project explicitly distinguishes micro-reboots from
failover to a new node, which they describe as a more time-
consuming and less desirable operation [3].

System-wide undo capability as envisioned by the ROC
pro-ject depends on what they call the “three R’s”: rewind,
repair, and replay [2]. Rewind is seen in many software sys-
tems (for example, rollbacks in databases) but building an
architecture for repair and replay can be more challenging.
Any operations done after the fault occurred are “replayed”
in the context of the repaired system, which may differ from
the original context in which the operations were taken (for
example, end-users may have already seen and interacted
with faulty results) [2]. The system described in this paper
performs a rewind step, but opts for simply running the sim-
ulation from that point rather than attempting to “replay”
logged operations. We sidestep the problem of potentially
delivering faulty results to the end-user due to the built-in
barrier of a completed simulation day: a day’s simulation
results will not be delivered to an end-user until all nodes
have reported results.

8. CONCLUSIONS AND FUTURE WORK

8.1 Conclusions
We have devised an adaptive checkpointing strategy and

fault tolerance framework for discrete event simulations which
dynamically selects both the timing and mechanism to per-
form checkpoints. The mechanism to perform checkpoints
could either be full-fledged or deltas computed based on dif-
ferences between successive full-fledged checkpoints. The
decision is based on the time it takes to compute the check-

point (and the overhead it adds to the overall simulation),
the transmission overhead, and the amount of work that
needs to be duplicated should the simulation be rolled back.

To our knowledge, this is the first attempt to incorpo-
rate fault tolerance into a discrete event simulation orches-
trated using a stream processing engine. All interactions and
control messages are orchestrated as streams. Distributed
workers that orchestrate this simulation run inside compu-
tations that are activated when data is available on their
input streams.

Our framework can handle an arbitrary number of failures.
The system can sustain permanent failures of all workers in
the system. The system allows incorporation of redundancy
for the checkpoint orchestrator (Speculator). With multiple
Speculators, when the primary fails, one of the surviving
speculators is promoted to be the primary. Where there is
just one instance of the Speculator, we can sustain transient
failures (such as restart of a machine) because Speculators
manage their state by writing to, and reconstructing from,
persistent local storage.

We have verified the correctness of our recovery strategy
for the stochastic discrete event simulation. We have done
this in the presence of multiple, concurrent failures and an
adaptive checkpointing strategy.

The overheads introduced by our strategy are acceptable
in situations where failures do not take place. In situations
where a failure occurs, we reduce the recovery costs by min-
imizing the amount of work that needs to be duplicated.

8.2 Future Work
While the simple neural network we used to predict cha-

nges in system state performed well for our purposes, a Re-
current Neural Network (RNN) may provide better perfor-
mance for making predictions due to their internal mem-
ory. In the future, we will evaluate different prediction tech-
niques, including utilizing Elman networks.

Our delta checkpoint scheme provides different options to
improve performance by allowing both the compression and
suffix sorting algorithms to be changed at runtime. Selec-
tion of the appropriate algorithms could be performed auto-
matically during the training process, or could be changed
dynamically by the Speculator as conditions in the system
change over time.

We also plan to adapt our parallelization and fault toler-
ance frameworks to oversee the execution of a different dis-
crete event simulation to help identify common traits and
execution patterns that affect fault tolerance functionality.
This could incorporate new system health metrics and learn-
ing techniques to make our framework even more generaliz-
able.
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