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ABSTRACT
The proliferation of observational devices and sensors with
networking capabilities has led to growth in both the rates
and sources of data that ultimately contribute to extreme-
scale data volumes. Datasets generated in such settings are
often multidimensional, with each dimension accounting for
a feature of interest. We posit that efficient evaluation of
queries over such datasets must account for both the distri-
bution of data values and the patterns in the queries them-
selves. Configuring query evaluation by hand is infeasible
given the data volumes, dimensionality, and the rates at
which new data and queries arrive. In this paper, we de-
scribe our algorithm to autonomously improve query evalu-
ations over voluminous, distributed datasets. Our approach
autonomously tunes for the most dominant query patterns
and distribution of values across a dimension. We evaluate
our algorithm in the context of our system, Galileo, which
is a hierarchical distributed hash table used for managing
geospatial, time-series data. Our system strikes a balance
between memory utilization, fast evaluations, and search
space reductions. Empirical evaluations reported here are
performed on a dataset that is multidimensional and com-
prises a billion files. The schemes described in this work are
broadly applicable to any system that leverages distributed
hash tables as a storage mechanism.

Categories and Subject Descriptors
D.4.3 [File Systems Management]: Distributed file sys-
tems; I.2.8 [Problem Solving, Control Methods, and
Search]: Graph and tree search strategies

General Terms
Algorithms, Design, Performance

Keywords
Autonomous query tuning, distributed hash tables, multidi-
mensional data
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1. INTRODUCTION
Observational devices and sensors with networking capa-

bilities have become more and more pervasive, leading to
growth in both the rates and sources of data that ultimately
contribute to data volumes. Datasets generated in such
settings are often multidimensional; for example, in atmo-
spheric datasets a given geospatial location has data cor-
responding to multiple features such as humidity, pressure,
temperature, etc. These datasets are dynamic with contin-
ual addition of data and query evaluations. The increase
in data volumes has been accompanied by a corresponding
increase in the complexity and rates at which queries are
performed on data. Given the data volumes involved, data
must also be stored on multiple machines so that query eval-
uation can be performed concurrently. Furthermore, even on
a given node it is infeasible to hold all data items in memory
and then perform query evaluations.

Query evaluation frameworks in such settings must be
decentralized and manage their data structures efficiently.
Storage across multiple machines allows concurrent evalu-
ations on portions of the datasets, requiring each machine
to maintain a coarse-grained view of the entire dataset; this
approximate global view assists in search-space reductions.
There must also be support for fine-grained evaluation of
queries over portions of the dataset stored at a given node.
The system may also include optimization features such as
reorientation of the data structures in response to data ar-
rivals. The data structures may be on-disk or memory-
resident and the information maintained in them have dif-
ferent granularities based on the scope of the data under its
purview.

The problem we consider is the fast evaluation of queries
over large, multi-dimensional datasets. One of these dimen-
sions is time, so the queries can also be time-series based.
This problem must be dealt with in the presence of high rates
of arrivals for both new data and queries. Solutions must ac-
count for memory utilization, traversals of data structures,
and search space reductions during query evaluations.

1.1 Research Challenges
Challenges stem from the characteristics of the data being

stored and retrieved through query evaluations. The data
is multidimensional and the range of values that the types
associated with the data can take on can be unlimited and
continuous. Across the stored data, there are differences in
the density of both queries and values along each dimension.
Furthermore, for a given dimension, the queries may span
specific ranges of values. Human intervention to optimize



such query evaluations is infeasible because of the rates of
data and query arrivals, the dimensionality and range of
values, and data volumes.

1.2 Research Questions
Our goal is to minimize human intervention and autono-

mously tune data structures that assist in query evaluations
in the aforementioned settings. To achieve this we must
account not just for the data arrivals and the characteristics
of the stored data, but also the queries that arrive. This
work was driven by the following research questions.

1. How can we account for differences in the density of
values across a specific dimension?

2. How we can exploit patterns in query arrivals to im-
prove turnaround times?

3. Can we achieve (1) and (2) while being timely and
autonomous? Specifically, can we get the system to
adapt to changes in the datasets and query arrivals in
a timely fashion?

1.3 Paper Contributions
By dynamically adapting to the density of values and

queries expressed across ranges of a particular dimension,
our reductions in the search space during query evaluations
are greater than those for static, preconfigured settings. Our
paper contributions include the following:

• We have devised a scheme to autonomously tune query
evaluations over a large dataset dispersed over a col-
lection of machines.

• Our approach can cope with data volumes and fast ar-
rival rates. Our empirical evaluations were performed
on a real dataset encompassing a billion files. The
dataset was sourced from NOAA’s NAM effort.

• We can sustain variability in the density of data values
across different dimensions and also in how queries are
expressed over different dimensions.

• Rather than optimize for corner cases, we focus on im-
proving the most dominant use case. The more often
we see a query pattern the greater the probability that
the system will return similar queries faster. Similarly,
the greater the density of values along a particular di-
mension, the greater the probability that query evalu-
ations along that range will be faster.

• Our proposed learning schemes are broadly applicable
to other multidimensional, voluminous datasets. We
have contrasted our results with a well-known storage
system. Our results should be broadly applicable to
other DHT-based systems as well.

1.4 Approach
The algorithms described in this work were applied in the

context of Galileo, our distributed file system for the storage
and retrieval of multidimensional data. The feature graph in
Galileo assists in the evaluation of queries by enabling fast,
approximate results based on value ranges called tick marks
that do not include false negatives. These results contain
information about nodes that hold data blocks or metadata
that match the specified query. The original query is then

forwarded to the nodes in the approximation set to retrieve
data blocks matching the query. The approximation set is
a superset of the actual set of nodes that hold the matching
data blocks. Our objective is to reduce the difference in
the cardinality of the two sets while retaining the ability
to suppress false negatives, i.e. the situation where a node
holds particular data blocks matching the query but does
not appear in approximation set.

Our approach to autonomous tuning incorporates two key
strategies. The first one focuses on dynamic reorientation of
graphs to account for data dimensions and also the order in
which they are specified in a majority of the queries. This
orientation is used to reduce number of edges that must be
traversed during query evaluations and also to reduce the
memory footprint. The second strategy targets improve-
ments in tick marks corresponding to data values. Dynamic
tick marks along a specific dimension allow accounting for
variability in the distribution of values across a specific di-
mension. Accounting for such variability allows us to reduce
the search space for queries. Both these strategies can be
used in tandem.

While query turnaround time may not be of the utmost
importance for all use cases, the adaptive reduction in search
space provided by our algorithms also greatly increases scal-
ability when dealing with large, heterogeneous clusters of
commodity hardware. Furthermore, reducing the search
space results in less wasted CPU cycles and power consump-
tion, along with overall increased throughput as the system
can handle more concurrent requests. This applies to any
multidimensional dataset; Galileo is not limited to strictly
atmospheric applications.

1.5 Experimental Data
In this study, we utilized real-world data from the North

American Mesoscale Forecast System (NAM), provided by
the National Oceanic and Atmospheric Administration. Our
data consisted of samples from 2009-2013, creating a dataset
of one billion (1,000,000,000) files. The metadata attributes
we used for this study from the files included the spatial
location of the sample, temporal range during which the data
was recorded, percent maximum relative humidity, surface
temperature (Kelvin), wind speed (meters per second) and
snow depth (meters).

1.6 Paper Organization
The remainder of this paper is organized as follows: the

next section provides an overview of Galileo and its architec-
ture, and introduces the basis for the optimizations we made
in this paper. Section 3 explains autonomous graph reorien-
tation in the system, which strives to improve memory usage
and query response times based on user activities. Section 4
details our dynamic indexing system, which responds to dif-
ferent workloads by reconfiguring the granularity of indexed
data points. Section 5 contrasts the performance of Galileo
with Apache HBase, followed by related work in Section 6.
We bring the paper to a close with our conclusions and fu-
ture work in Section 7.

2. GALILEO
The Galileo distributed file system [10,11] is designed for

high-throughput storage and retrieval of multidimensional
data at the petabyte scale. It features a hybrid DHT-based
network design and rich data structures for handling sci-
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Figure 1: Two different metadata graph orientations of a dataset with spatio-temporal characteristics.
Diamond-shaped leaf nodes point to locations of files on stored on disk.

entific storage demands, along with the ability to process
and manage information through the Granules cloud run-
time [14].

2.1 Network Structure
Galileo is implemented as a hierarchical distributed hash

table (DHT). DHTs are a highly scalable, decentralized sys-
tem for mapping key-value pairs to storage nodes. To do
this, a hash space is divided up among all the nodes in
the system. When performing storage or lookup operations,
a key (which could be a file name or some other type of
unique identifier) is passed through a hash function to de-
termine which node in the system is responsible for storing
the key’s associated value. Unlike traditional DHTs such
as Chord [20], CAN [17], or Pastry [19], Galileo is also a
zero-hop DHT, similar to Apache Cassandra [9] or Amazon
Dynamo [8]. This means that the system has enough infor-
mation to route requests directly to their destination rather
than traversing a network topology.

The hierarchical structure in Galileo is created by its two
core network components: Storage Nodes (or simply nodes),
which represent a computational resource, and groups, which
contain an arbitrary number of nodes and subgroups. One
key benefit from this structure is a reduction of the search
space for queries, a functionality that generally is not sup-
ported in DHTs, but has been investigated in a number
of systems, [6, 15] including Galileo [12]. For our specific
dataset, we use a two-tiered hierarchy: when storing or re-
trieving data, group membership is determined by the sam-
ple’s Geohash, [23] which maps spatial locations to character
strings. To determine the specific node within the destina-
tion group that should be responsible for the data, a simple
SHA-1 hash is used to help balance load. Depending on the
particular dataset, any number of groups and hash functions
can be used for partitioning data in Galileo.

2.2 File Blocks
Files in Galileo are generally stored as a number of blocks.

A block is a multi-dimensional array of arbitrary data for
supporting use cases similar to SciDB [3,4] or NetCDF [18].
Galileo can also read and store files in a number of scien-
tific formats, including NetCDF, BUFR, GRIB, and HDF5.

When files are stored in the system, they are first inspected
for relevant metadata attributes and indexed for fast and
flexible retrieval. Galileo supports both exact-match (which
could return multiple relevant files) and range-based queries.
Queries return results to the user in the form of a dataset,
which is a navigable data structure that describes the files
and their metadata. If the user chooses to do so, the original
blocks can then be retrieved from the system as well.

2.3 Metadata and Features
One primary function in scientific data storage is manag-

ing not only the files themselves, but also their associated
metadata. During storage operations, Galileo inspects in-
coming files and extracts relevant features that describe the
data. These features are used for indexing information in the
system; each Storage Node maintains an in-memory instance
of a metadata graph, which contains feature information for
each file it is responsible for storing. The metadata graph
can then be used to quickly locate files in the system.

An instance of the metadata graph consists of a hierarchy
of features; an example is shown in Figure 1. The first tier
of vertices, and entry point into the graph, is composed of
multiple values of a single feature type. Each vertex con-
tains a number of edges that lead to the next feature type,
and so on. Collections of feature values, called paths, de-
scribe a particular traversal of the graph that leads to the
file associated with the values; traversing the graph acts as
a logical AND operator on the values specified. If a query
path contains a wildcard, all descendants of the wildcard
feature type are traversed.

Different graph orientations provide different traversal pro-
perties: some configurations of the metadata graph may re-
duce the overall number of vertices maintained, which also
reduces memory usage, while others may provide faster look-
up times when frequently-requested feature types are posi-
tioned at the top of the hierarchy. Figure 1 illustrates this
behavior on a small scale, with the spatially-oriented graph
containing 36 vertices while the temporally-oriented graph
contains only 30.
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Figure 2: A simplified feature graph showing hu-
midity and temperature ranges. A traversal of the
graph leads to Storage Node identifiers that hold
relevant information.

2.4 The Feature Graph
While the metadata graph provides efficient lookup func-

tionality at the Storage Node level, it does not provide any
assistance for clients that do not already know which nodes
hold the data they are interested in. Our hierarchical parti-
tioning scheme allows clients to locate data within a spatial
region, but it still does not reduce the search space if the re-
gion of interest is not known. To cope with these issues, we
introduced the feature graph, which is a lightweight global
index of all the data stored in the system.

In order to make the feature graph a feasible addition to
Galileo, incoming data is placed in ranges of reduced dimen-
sionality called tick marks. Briefly, tick marks are a form of
quantization that allows the system to index larger quanti-
ties of data quickly by decreasing its precision; for example,
a temperature reading of 23 degrees Celsius may be placed
in a tick mark range of 20-30 degrees. This 10-degree range
represents a tick mark granularity of 10, and any samples
falling within the range can be represented by a single ver-
tex. Figure 2 provides an example of a simple feature graph.
Querying the feature graph provides results in a form of a
list of storage nodes that are likely to hold data relevant to
the query. The feature graph is not bound to any partic-
ular storage system implementation, and has been used in
a past study to augment the lookup capabilities of Apache
HBase [12,21].

Since the feature graph is a global data structure, stor-
age nodes utilize a simple gossip protocol to publish graph
updates in the form of paths to the other nodes. Galileo is
an eventually consistent file system, so these updates occur
asynchronously. To reduce communication, nodes commu-
nicate changes within their groups first, and then an elected
group leader shares aggregate updates with the other groups
in the system.

Our graph implementations provide flexible and fast lookup
operations, but achieving optimal performance requires pro-
per configuration. In this paper, we provide a framework
for autonomously reconfiguring the system at runtime to
achieve better performance by inspecting storage and query
trends and then tuning graph parameters accordingly. This
is accomplished from two angles: dynamic reorientation of
the graphs, and autonomous partitioning of the feature graph
tick marks.

3. GRAPH REORIENTATION
The order of features in our metadata and feature graph

hierarchies determines how many vertices they will contain
and how fast a query can be completed. To optimize mem-
ory consumption by reducing the number of vertices in the
graph, features with a high variability in values should gen-
erally be placed near the top of the hierarchy; if placed near
the end of a query path, a large number of leaf nodes would
have to be created to accommodate the feature’s variabil-
ity. Unfortunately, optimizing search operations does not
always align with reducing memory consumption: if users
are generally interested only in the features stored as leaf
nodes, then an exhaustive search of the graph during query
evaluation becomes much more likely. With our four target
features, Table 1 demonstrates the difference in vertices and
edges between three notable orientations (out of a possible
24).

Table 1: Vertex and edge counts for different feature
graph orientations.

Orientation Vertices Edges

Humidity
Temperature
Wind Speed
Snow Depth

454,5692 2,267,984

Temperature
Humidity
Wind Speed
Snow Depth

452,458 2,254,029

Snow Depth
Wind Speed
Temperature
Humidity

250,531 1,240,178

While some orientations of the graph can result in a small
percentage change in vertices, (less than 1% by substitut-
ing humidity for temperature in the path ordering) other
configurations can result in much more drastic memory con-
sumption changes.

3.1 Traversal Performance Monitoring
To evaluate traversal and memory costs of the feature and

metadata graphs, we recorded traversal times and vertex
counts for not only the entire graph, but each level of the
feature hierarchy as well. This allows the system to strike
a balance between memory-efficient and quickly-traversable
orientations: if a particular level in the hierarchy accounts
for a disproportionate amount of vertices or traversal time, it
should be reconfigured. In cases where the memory available
to the storage node is scarce, the graph will be oriented to
optimize memory consumption first; otherwise, our focus is
on query response times.

Queries submitted to nodes in the system can contain a
number of feature values. For features where an exact value
or range of values is not specified, a wildcard operator is in-
serted into the path. In general, when queries contain more
wildcards, their traversal times through both the feature
and metadata graphs will be higher. Therefore, Galileo also



monitors trends in query parameters to determine features
that are often specified together, and may be related.

3.2 Dynamic Reorientation
Graph performance statistics collected at individual stor-

age nodes provides enough data for the node to make in-
formed decisions about how its graphs should be oriented.
Due to the hierarchical partitioning schemes supported by
Galileo, storage and retrieval trends may vary across an en-
tire cluster, so each node must reorient its metadata and
feature graphs to fit its individual access patterns. To ac-
commodate this functionality, we modified our path data
structure, which represents a graph traversal, to be reori-
ented as well. These general paths are represented as simple
key-value pairs where feature types are mapped to feature
values. This modification ensures that each node in the sys-
tem can orient its feature graph optimally for its specific use
cases and still transmit updates in an orientation-neutral
manner.

To dynamically reorient its graph instances, a storage
node first inspects mean traversal times for incoming queries.
If a particular level in the hierarchy accounts for the major-
ity of incoming queries or its traversal times are more than
two standard deviations from the mean, then it is flagged
for reconfiguration. For example, if users are primarily in-
terested in temperature values, but they are placed at the
bottom of the hierarchy, then their resulting traversal times
will be much greater than those of other features. Addition-
ally, if temperature values are the only type of query being
submitted, they will account for the majority and also be
flagged. For each iteration of the algorithm, only one fea-
ture or set of features is selected for optimization.

Once candidates for reconfiguration have been selected,
their dependencies on other features are reviewed to deter-
mine if they can be moved closer to their dependent neigh-
bors. Once a new hierarchy has been created, the amount
of vertices that will have to be created or removed is calcu-
lated to evaluate its memory footprint. If all constraints are
met, the graph is reoriented. Table 2 compares the perfor-
mance of Galileo with and without dynamic reorientation;
both systems started with a memory-efficient orientation of
the feature graph and then were tested with a battery of
queries that trended towards a randomly-selected feature.

Table 2: Benchmark of feature graph traversal times
with and without dynamic reorientation.

Configuration Traversal (ms) SD (ms)

Standard 0.4 0.7

Dynamic 0.1 0.3

While graph traversals cost on the order of milliseconds,
a heavily-loaded server greatly improve its throughput by
locating information faster. This functionality provides op-
timization for both the feature and metadata graphs, so it
benefits both nodes in the system that are routing requests
and those that are servicing queries.

To cope with the rare case that usage patterns change dur-
ing a graph reconfiguration, new configurations are given a
trial period in which their performance is evaluated. If query
throughput has decreased, the algorithm will be run again to

create a new configuration that reflects current usage trends,
or fall back to the previous configuration. This restriction
also prevents toggling between configurations that have sim-
ilar performance profiles.

Trends in the system may change due to the time of day or
because of other external factors, so the data collected must
be aged appropriately and discarded regularly to ensure a
given configuration remains relevant. To do this, we provide
an adjustable timeout threshold that gradually phases out
old performance information.

4. DYNAMIC MODIFICATION OF INDEX
DIMENSIONALITY

Feature values in Galileo can be bounded or unbounded,
contain different primitive data types, or be expressed us-
ing a variety of units. For instance, humidity values can
be measured by percentages ranging from 0-100, while snow
depth may be expressed using centimeters or inches and will
contain only positive readings. While it is possible for users
of the system to provide details or domain knowledge about
the data they are storing, the optimal granularity of tick
marks for the feature graph is often unknown during sys-
tem configuration, or may evolve over time. Additionally,
due to the high dimensionality of the data being stored, re-
lationships between features may not be initially obvious.
To remedy these issues, the system inspects the information
being stored or queried by users, and then autonomously
reconfigures the feature graph with variable tick marks to
optimize performance.

Figure 3 illustrates why a fixed tick granularity is ineffi-
cient for our billion-file subject dataset; with humidity in-
crements of 5%, the first few vertices are relatively unused,
while the ticks covering values from 80-100% account for the
majority of the data and queries in the system. This can be
remedied by reducing the tick granularity to 1% or less, at
the cost of many more vertices being created. The figure also
includes the kernel density estimation, an approximation of
the probability density function for humidity values.

There are two key benefits from allowing a variable tick
mark granularity and adjusting it dynamically: vertices ref-
erence fewer storage nodes, thereby reducing the search space
of client queries, and fewer vertices must be created to achieve
the same performance as a fixed tick granularity. To do this,
Galileo must first detect storage and query imbalances in the
tick marks, and then apply proportional splits to reduce the
amount of data each vertex is responsible for.

4.1 Detecting Imbalances
Depending on the configuration of the feature graph, im-

balances can form for both queries and storage operations.
Queries may target a particular precision of values that the
current feature graph doesn’t have fine-grained vertices for,
resulting in more storage nodes needing to be contacted
for the information. Incoming data is almost always non-
uniform in real-world situations as well. While detecting
the existence of an imbalance in the feature graph is sim-
ple, ensuring that the system does not reconfigure the graph
needlessly or excessively is a much more difficult problem.
After all, the feature graph is a global data structure, and
any changes made to it must be gossiped to the entire clus-
ter.

To gain a consensus on vertices in the feature graph that
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Figure 3: Storage distribution of humidity values
with a uniform 5% tick mark granularity in our
billion-file dataset.

must be reconfigured, each storage node tracks the number
of query or storage operations that involve each vertex in
the graph. These “hit” counts are gossiped along with other
state updates in the system. Additionally, nodes calculate
the percentage of total hits occurring at each vertex to gen-
erate an approximation of the probability each node will be
involved in a future query or storage request. Figure 4 shows
the probability distributions of humidity values as more files
are stored in the system; a clear trend towards files having
values in the 80-100% range is evident as the dataset is sub-
sampled. A small random sample of incoming files (about
1,000) exhibits a similar trend.

After each feature graph gossip update interval, probabil-
ity distributions are inspected to determine if particular tick
marks are exhibiting a larger percentage of overall queries
and storage requests. If a tick is flagged in two consecu-
tive graph updates, its feature type becomes a candidate for
reconfiguration.

4.2 Network Coordination
Since the feature graph is shared globally, only one storage

node needs to perform the reconfiguration. An eligible node
must meet the following requirements:

1. It must host files stored under the tick in question, i.e.,
be returned in the results of a graph traversal involv-
ing the tick mark. This helps reduce the amount of
communication required for reconfiguration.

2. Its thread pool for processing must have at least one
free thread.

3. It may not be a group leader in the DHT hierarchy.
Leaders are already responsible for additional commu-
nication operations.

In the case of ties, where multiple candidates meet the re-
quirements, the node with the lowest identifier is selected
to be a reconfiguration coordinator. Concurrent modifica-
tion of the feature graph can be allowed as long as different
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Figure 4: Probability density of humidity values as
more files are stored in the system.

nodes are modifying tick ranges that involve unrelated paths
in the graph.

Reconfiguring the feature graph is not computationally
expensive, but involves network IO latencies and coordina-
tion across the entire system. For this reason, we avoided
using a locking mechanism on the graph during reconfigu-
ration. Instead, modifications are gossiped throughout the
system, and then graph paths for any new files that were
stored during the reconfiguration are “replayed” from the
system journal on the updated graph. To ensure the graph
remains consistent, versioning information is also included
in gossip messages.

4.3 Proportional Splits
Our system uses the coefficient of variation, (CV ) a mea-

sure of how dispersed a probability distribution is, to detect
hit imbalances in vertices. The coefficient of variation has
been used in analyzing computational loads [5,24], and is ex-
pressed as the relationship between the standard deviation
σ to the mean µ:

CV =
σ

µ

To reduce the coefficient of variation, there are two op-
tions: decreasing the standard deviation, or increasing the
mean percentage of hits at each vertex. In general, this is
achieved by performing a proportional split on overloaded
vertices.

A proportional split involves identifying a vertex that is
receiving a disproportionate amount of hits, querying stor-
age nodes with relevant data, and then reducing the tick
mark range by splitting it into two or more new tick ranges.
Figure 5 provides a visual overview of the process. For a
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Figure 5: Visual demonstration of our proportional
split algorithm. 4 ticks are present in phase A, of
which two vertices are split. The resulting range
consists of 10 ticks shown in phase E, with each re-
sponsible for 10% of the storage and query load.

feature type that has been flagged for reconfiguration, the
process is repeated until CV ≤ 1.0.

The proportional split algorithm proceeds as follows: the
percentage of hits at each tick mark range, mean percentage
of hits, and standard deviation is calculated. This infor-
mation is used to compute the feature CV . If CV > 1.0,
then the tick mark range with the largest percentage of hits
is selected for splitting. Once a range has been selected,
each storage node associated with the vertex is queried for
all matching data. This operation only involves a metadata
query, so the resulting files themselves do not have to be
transfered to the coordinating node. The coordinator in-
spects the query results and determines the number of new
tick ranges that should be created based on the relationship
between storage nodes and data. After all, splitting a tick
mark range into two vertices that point to the same set of
nodes does not further reduce the search space. The coor-
dinator attempts to split the tick mark range in such a way
that data will be as evenly distributed as possible across the
new vertices, and repeats the algorithm if necessary. Algo-
rithm 1 contains the pseudocode for this process.

After the algorithm has completed, tick mark ranges are
configured non-uniformly to match the hit trend their fea-
ture type is experiencing. Figure 6 illustrates the result of a
splitting operation, with the vertices’ (shown as bars) widths

Algorithm 1 Proportional Split: split(feature)

Require: CV > 1.0
µ⇐ 1.0/numV ertices

σ ⇐
√
variance(hitPercentages)

CV ⇐ σ/µ

{Find vertex with highest percentage of hits}
v ⇐ max(hitPercentages)
files⇐ query(v)
balance ticks(files)
divide ticks(files)

if CV > 1.0 then
split(feature) {Repeat the procedure until CV ≤ 1.0}

end if
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Figure 6: Distribution of tick mark ranges after a
proportional split operation has taken place. Bar
widths represent the range of values each vertex is
responsible for.
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Figure 7: Distribution of tick mark ranges after a
vertex reclamation followed by a proportional split
operation. Contrasting with Figure 6, the first two
tick ranges have been merged.

representing the range of humidity values each is responsi-
ble for. Since a storage request and a query both count as
a hit, our algorithm can deal with changes in storage pat-
terns and differences in user queries. In a new installation
of the system, storage operations will generally drive how
tick marks are configured, but our hit count strategy also
naturally places an emphasis on servicing user requests by
giving each query the same weight as a single storage oper-
ation. This leads to dynamic reconfiguration long after the
system has been installed without needing to phase out old
data on a regular basis.

4.4 Vertex Reclamation
While our proportional split algorithm helps even the bal-

ance of load across vertices in the feature graph, it does not
account for under-utilized vertices. To rectify this limita-
tion, the coordinating node attempts a vertex reclamation
operation on the feature graph before proceeding with the
proportional split process. Vertex reclamation works simi-
larly to proportional splitting, but reconfigures vertices that
have the lowest percentage of hits in the feature graph.

The reclamation algorithm begins by locating tick mark
ranges receiving the lowest percentage of hits. It then in-
spects neighboring vertices to determine their differences in
referenced storage nodes. If there are no differences, then
the ranges can be safely merged. Otherwise, the neighbor-
ing vertex with the fewest differences is used as a candidate
for merging. After performing the reclamation, the coeffi-
cient of variation is calculated to determine if the operation
resulted in more or less dispersion in the probability dis-
tribution; if there is less dispersion, the changes are kept.
Otherwise, the algorithm moves on to the tick range with
next-lowest percentage of hits. Figure 7 contrasts with Fig-
ure 6 in that the first two tick ranges have been merged
through reclamation.

Performing a reclamation is beneficial in two ways. First,
reducing the number of vertices in the graph increases the
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Figure 8: Read throughput in Galileo and HBase.

mean percentage of hits spread across vertices of a given fea-
ture type, resulting in a lower coefficient of variation. Ad-
ditionally, by allowing vertices to be reclaimed, previously-
configured tick mark boundaries can be changed; a vertex
could be reclaimed, and then re-split to provide a more effi-
cient mapping of feature values to storage nodes.

5. HBASE COMPARISON
To ensure that the changes we made to Galileo performed

as expected, we ran a series of throughput benchmarks on
the system and revisited our performance comparison with
Apache HBase [21] 0.92.1. The benchmarks were carried out
on a 70-node cluster running OpenJDK 1.7.0. The cluster
consisted of 47 HP DL160 servers (2.4 Ghz quad-core In-
tel Xeon processor, 12 GB of RAM, 15,000 RPM disk) and
28 SunFire X4100 servers (dual-core 2.8 Ghz Opteron 254
processors, 8 GB of RAM, 10,000 RPM disk).

To ensure files were stored using spatial locality in HBase,
we adjusted our storage strategy by incorporating block UU-
IDs as our row keys, prefixed with a Geohash of each file’s
spatial location. We also utilized our standalone version
of the feature graph and had its traversal results point to
HBase block UUIDs so that specific items in the system
could be referenced directly. Each record from our dataset
was about 8 KB in size.

Figure 8 compares the read throughput of Galileo and
Hbase. We submitted the same set of queries to both sys-
tems, and each test was run 100 times on different spatial
regions. We also compared write throughput, shown in Fig-
ure 9, which exhibits similar trends in performance, although
the throughput is reduced in both systems when compared
to read operations.

This benchmark primarily underscores the fact that Galileo
excels at the workloads it has been designed for; while HBase
sees considerable usage in the geospatial community, it is a
more general system, primarily designed for sparsely popu-
lated, semi-structured data.
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Figure 9: Write throughput in Galileo and HBase.

6. RELATED WORK
Cassandra [9] shares many attributes with Galileo in its

network layout and storage system capabilities. It provides
a number of different data partitioning approaches for users
depending on their workloads, which can also be extended
or reconfigured for different data types. Contrasting with
Galileo, the partitioning algorithm used in Cassandra di-
rectly affects possible retrieval operations; using the random
data partitioner backed by a simple hash algorithm does not
allow for range queries or later reconfiguration of the parti-
tioning scheme. Cassandra is also primarily concerned with
write-heavy workloads on textual data rather than the mul-
tidimensional binary arrays that Galileo deals with.

Gavrila [7] has investigated R-tree index optimization for
use in geographic information systems (GIS). Much like Gal-
ileo, the optimizations described involve preserving spatial
relationships between data points through “packing.” While
the system targeted in the paper is not distributed across
a number of computing resources, many of the challenges
faced on a single machine are still relevant in a distributed
setting. For instance, our optimizations in Galileo are pri-
marily concerned with reducing network latencies, while the
described system aims to reduce disk seek times. Ultimately,
both objectives target latency reduction. The packing tech-
nique described in the paper can be run after creating a
static database, or used to periodically adjust the system
during idle times. It involves clustering data points and
then evaluating cluster quality to determine how the system
should be reconfigured.

SciDB [3, 4] deals with petabyte-scale datasets in a dis-
tributed environment much like Galileo. The system pro-
vides built-in computation and analysis tools, and stores
metadata in a centralized system catalog. The system cata-
log is backed by a PostgreSQL relational database, meaning
that queries are handled using a configurable query opti-
mizer that generates a query plan based on the input SQL
operators. This approach contrasts with Galileo in that the
query facilitator is exhaustive and centralized, whereas the
feature graph in Galileo is distributed across all nodes and
is comparatively lightweight.

The Prefix Hash Tree (PHT) data structure [16] provides
a binary trie index that runs on a traditional DHT. PHT
uses the existing lookup interface provided by its host DHT
to provide range and proximity queries. This indexing struc-
ture naturally leads to a hierarchy of nodes, much like Galileo,
and query processing operations are spread across the hier-
archy. The PHT design also allows it to provide its func-
tionality while preserving the fault tolerance properties of
traditional DHTs.

Replication, Load Balancing and Efficient Range Query
Processing in DHTs by Pitoura et al. [15] aims to deal
with query and storage load balancing through replication.
The system described, HoTRoD, is built atop a locality-
preserving DHT, much like Mercury [2] and OP-Chord [22].
Locality-preserving DHTs provide support for range queries
by distributing data in an order-preserving way, but suffer
from storage imbalances that arise from non-uniform data.
To overcome this limitation and also deal with high-traffic
nodes, HoTRod replicates arcs of nodes, which represent
a sequence of neighboring peers in the hash space. These
replicated arcs are “rotated” across overlapping virtual hash
spaces and stored on different nodes, which can then be used
to service requests.

As an enhancement to OP-Chord, Ntarmos et al. [13] add
an additional hash space on top of the standard space called
a RangeGuard. The RangeGuard helps support processing
range queries across the underlying DHT and is composed
of the most powerful nodes in the cluster. Nodes in the
RangeGuard act as super nodes and are promoted through
a specialized algorithm that accounts for heterogeneity. In
this system, both the promoted nodes and standard nodes
running in the traditional hash space can be used for query
processing. The enhancements proposed in this particular
work do not require any global knowledge to provide range
query support, but requests must hop through the network
rather than being processed immediately in parallel as done
in Galileo.

Abdallah and Le [1] propose a different solution to the
order-preserving distributed hash table: rather than relo-
cating data in the system, nodes themselves are relocated
in the hash space and data is migrated to provide a better
balance of storage and query handling. In general, under-
utilized nodes are moved within the hash space to ensure
that data migrations do not have a severe impact on perfor-
mance. While migrating nodes is an interesting concept, it
is likely quite expensive in a heavily-loaded system.

7. CONCLUSIONS AND FUTURE WORK
Query evaluations over voluminous datasets must account

for the characteristics of the data and the queries that have
been performed. In the case of multidimensional data this
involves accounting for not just the distribution of values
across a specific dimension, but also the order in which these
dimensions are specified in the queries. Our scheme for fea-
ture graph orientations and dynamic tick marks allow us
to optimize queries that occur commonly. This is done au-
tonomously by the system. Graph reorientations allow us to
reduce the number of paths that must be traversed within
the feature graph for faster query evaluations. Dynamic tick
marks allow us to reduce the search space for query evalu-
ations and help mitigate the problem of queues building up
at nodes with queries that will have no matching results.

Autonomous tuning allows us to account for the evolu-



tion of datasets and also for changes in how queries are per-
formed. Our benchmarks demonstrate the feasibility of us-
ing our approach on a large multi-dimensional dataset. The
approach described here is broadly applicable to any system
that leverages distributed hash tables for storing data.

Currently, we rely on a windowing scheme to age out older
queries and keep data structures in sync with queries that
have been issued in the near past. A natural extension of
this work is to account for query arrivals in addition to the
type of queries. Such a time-series analysis of query ar-
rival patterns will allow us to anticipate the types of queries
and proactively orient data structures in support of them.
As part of this future work we plan to either use statisti-
cal techniques such as ARIMA (Auto Regressive Integrated
Moving Average) or machine learning techniques such as
Hidden Markov Models to perform this time-series analysis.

To further enhance the performance of our dynamic in-
dex optimization algorithm, small movements of data be-
tween nodes could be implemented to reduce the amount of
false positive results produced from a feature graph traver-
sal. This data migration could be done in a lazy fashion,
with direct data migration occurring on relatively idle nodes
and on-demand transfers taking place on busy nodes. This
optimization could also be incorporated into a fully-fledged
load balancing scheme.

We may investigate the effects of utilizing other statisti-
cal methods to detect imbalances and facilitate proportional
split operations. This could involve using the Gini coefficient
and Lorenz curves for expressing overloaded vertices in the
feature graph.
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