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Abstract—Planning for large-scale epidemiological outbreaks
in livestock populations often involves executing compute-
intensive disease spread simulations. To capture the probabilities
of various outcomes, these simulations are executed several times
over a collection of representative input scenarios, producing
voluminous data. The resulting datasets contain valuable insights,
including sequences of events that lead to extreme outbreaks.
However, discovering and leveraging such information is also
computationally expensive. In this study, we propose a distributed
approach for analyzing voluminous epidemiology data to locate
and classify the most influential entities in a disease outbreak.
Using our disease transmission network (DTN), planners or
analysts can isolate entities that have a disproportionate effect
on epidemiological outcomes, enabling effective allocation of
limited resources such as vaccinations and field personnel. We
use a representative dataset to verify our approach, including
identification of influential entities and creation of machine
learning models for accurate classifications that generalize to
other datasets.

Index Terms—Epidemiological network analysis; Distributed
analytics; Disease spread classification; Super-Spreading Events

I. INTRODUCTION

According to the Food and Agricultural Organization (FAO),
there are currently more than 1.5 billion cattle, 1.1 billion
sheep, and 0.97 billion pigs and goats in the global livestock
industry, which employs at least 1.3 billion people [1]. Effec-
tive planning and response to infectious threats in livestock
are critical for the ecological system, the global economy, and
human health in the case of zoonotic diseases (such swine
flu) that exhibit cross-species transmission. There have been
significant efforts in the epidemiological modeling community
to understand and predict the distribution of disease within
a herd as well as transmission between herds [2]. Epidemi-
ological models, often expressed as stochastic discrete event
simulations, involve hundreds to thousands of input parameters
and tend to be compute-intensive.

In this study, we consider the North American Animal
Disease Spread Model (NAADSM), which has been vetted by
over 300 epidemiologists and veterinarians and is one of the
key tools used by the US Department of Agriculture to plan for
disease incursions [3]. NAADSM can be used to model foot-
and-mouth disease (FMD), highly pathogenic avian influenza,
swine flu, and pseudorabies [4], [5], [6]. In NAADSM, disease
biology parameters include transmission via airborne or direct
contact, control measures (such as vaccinations), effectiveness
of vaccines, quarantines, shipments, and veterinarian visits.
Since the simulation is stochastic, each set of input parameters

is executed several times to gain statistical confidence in the
results. These iterations contribute to the overall representation
of the output variables’ probability distributions. Key outputs
used during planning include the disease duration, number of
infected animals, and depletion of vaccine stockpiles. While
this study targets livestock disease outbreaks, the methodology
that we describe is broadly applicable to systems where
entities are organized into large networks and the spread of
information (be it pathogens, ideas, or traffic movements) is
based on relationships between entities.

One of the primary concerns during disease outbreak plan-
ning is allocating limited resources. Our goal in this effort is
to identify premises that could contribute disproportionately
to disease spread; i.e., once a particular premise is infected,
the overall disease duration, total number of infections, and
the probability of the disease becoming endemic are all high.
Identifying such premises allows limited resources (vaccines,
field personnel, and biosurveillance) to be allocated more
effectively and in a targeted fashion. This involves analyzing
voluminous data from simulation runs and tracking disease
evolution over time. Pinpointing highly influential herds that
contribute disproportionately to outbreaks is key when devel-
oping an effective response plan.

A. Scientific Challenges

Timely identification and characterization of influential
herds introduces a set of unique challenges:

1) Dataset Size: Epidemiological state is dispersed over
a large number of files (3.2 million in our subject
dataset). Each simulated time step produces an output
file containing a variety of simulation data that must be
processed to capture disease spread over time.

2) Timeliness: Our algorithms and analysis workflows must
execute in parallel across a cluster of computing re-
sources to ensure timely results. Given the data volumes
and disk I/O costs involved, repeated sweeps over the
dataset would introduce significant delays in analysis.

3) Scalability: The proposed approach must scale with in-
creases in the number of premises and interconnectivity
between entities. This ensures that the methodology is
applicable in other scenarios.

4) Accuracy and Interpretability: Our analysis must be
reasonably accurate, and support interpretability by ex-
plaining why a herd is considered highly influential. This
is critical for fine-tuning outbreak responses.



B. Research Questions

Research questions that we explore in this study include the
following:

1) What data structure(s) allow us to represent disease
spread interactions for analysis?
Specifically, we must capture infection information from
the simulation output and preserve the cumulative dy-
namics of disease spread. (§III-C)

2) How can we measure the influence of each herd?
This involves discovering the epidemic characteristics
of influential herds as well as the features that comprise
these characteristics, which enables interpretability and
herd classification. (§III-D)

3) How can we enable the analysis at scale?
Given the data volumes involved, we must avoid
repeated sweeps over on-disk data and execute analysis
concurrently on multiple machines. Specifically, our
methodology must scale with increases in the number of
premises, contacts, and machines available for analysis.
(§IV-D)

C. Overview of Approach

Our methodology for identification of influential premises in
voluminous epidemiology data involves: (1) extracting relevant
information needed for analysis from the dataset, (2) con-
structing a graph-based data structure, called the disease trans-
mission network (DTN) to encode this information, (3) using
the DTN for network analysis via the PageRank algorithm,
and (4) identification and characterization of super-spreaders
and seeders. Preprocessing and analysis tasks are expressed
as distributed computations implemented using Apache Spark
[7], with the dataset stored in HDFS [8]. These tasks execute
concurrently on multiple machines with data locality, and
avoid making repeated disk accesses by performing analysis
in main memory.

Our epidemiology dataset encompasses multiple representa-
tive scenarios and iterations, which we process to extract and
record millions of infection incidents. This includes tracking
the number, source, destination, and duration of infections.
This information is encoded in the disease transmission net-
work. The DTN is a weighted, directed graph that summarizes
the number of infections between premises; nodes within DTN
are premises and edges represent infection transmissions. The
direction of traversals within the DTN varies depending on the
algorithm underpinning the analysis.

Once generated, we analyze the DTN in multiple steps to
identify and characterize highly influential herds. One avenue
we leverage for analysis is the PageRank algorithm, which was
originally used in the Google search engine to estimate the
importance of web pages [9]. In our study, we use PageRank
to estimate the probability that a premise contributes to a
random infection chain. We calculate PageRank values for
each premise in the DTN; if a premise has a higher PageRank

value, we consider the herd to be more influential in the disease
outbreak.

Once we identify influential herds based on PageRank
values, we perform further analysis to understand other
epidemic characteristics such as classifying super-spreaders
and seeders. In epidemiology, a super-spreader is a host
that infects disproportionally more secondary contacts than
other hosts. We use the Pareto Principle [10] to determine
super-spreaders, and model the relationship between features
extracted from the output dataset to classify the super-
spreaders using support vector machines. On the other hand,
seeders are hosts that are among the first to be infected.
Besides global analysis using the DTN, we also allow
identification of the most influential premise(s) on a local
scale based on cross-premise reachability.

D. Paper Contributions

This paper presents our approach for identifying and char-
acterizing highly influential herds by analyzing voluminous
epidemiology data. Our specific contributions include:

1) We have designed a graph-based data structure, the
disease transmission network, that preserves cumulative
dynamics of disease spread across space and time. The
data structure supports traversals that are needed for
analysis and characterization.

2) Novel identification of influential herds by harnessing
and adapting the PageRank algorithm in the context of
epidemiology.

3) Support for interpretability of the analysis by identifying
key features that characterize influential herds.

4) Classification of super-spreaders using support vector
machines (SVMs). The resulting model can be used to
inform why a particular premise should be given priority
during outbreak responses.

5) Our approach avoids repeated I/O passes over the
datasets and compactly encodes results in the memory-
resident disease transmission network, which is
amenable to subsequent analysis by multiple learning
algorithms and statistical methods.

E. Paper Organization

The rest of the paper is organized as follows. Section II out-
lines the simulation and dataset used in this study, followed by
our methodology in Section III. Subsection III-A describes the
creation of the disease transmission network (DTN), followed
by preliminary analysis in Subsection III-B. The remainder
of our methodology is described in Subsection III-C, which
describes how we identify influential entities in the DTN, and
Subsection III-D, which details how we classify such entities.
Section IV provides a thorough evaluation of our methodology,
followed by related work in Section V. Finally, conclusions
and future research directions are described in Section VI.
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Fig. 1: High-level overview of our analysis workflow.

II. BACKGROUND

A. NAADSM

The North American Animal Disease Spread Model
(NAADSM) is a stochastic simulation of highly contagious
disease outbreaks in animals to aid strategy development and
decision making [3]. In this model, groups of livestock, called
units, are the basis of the simulation. Note that we also use the
terms premise and herd to refer to a group of animals. Disease
spread between units is influenced by production types, inter-
group similarities (shipment rates, infection rates, etc.), relative
locations, and distances between herds. When a unit is in-
fected, it follows a natural cycle of disease states consisting of:
susceptible, latent, sub-clinically infectious, clinically infec-
tious, naturally immune, vaccine immune, and destroyed. This
cycle can be interrupted by disease control strategies including
quarantine, destruction and vaccination. Disease spread among
units can happen in any of three methods: direct contact,
indirect contact, and airborne spread. Stochastic processes
drive all operations in the model and are based on user-
defined distributions and relational functions. NAADSM input
parameters can be of six types: yes/no values, integers, floating
point numbers, probabilities, probability density functions,
and relational functions. Collectively, these parameters form a
scenario. Because the simulation is stochastic, it is generally
run for several iterations (32 per scenario, in this study) to
gain confidence in the output distributions. To reduce the
overall execution time of the simulation, NAADSM can be
parallelized over a cluster of computing resources in a fault-
tolerant fashion [11].

B. Dataset

Our subject dataset was derived from a sensitivity analysis
that explored the NAADSM parameter space to produce mul-
tiple valid combinations of inputs set in Colorado, USA [12],
[13]. This process generated 100,000 scenario variants that
were executed 32 times for a total of 3.2 million outputs (6.26
TB). In this particular scenario, a single initial herd is infected,
with disease spread eventually encompassing tens of thousands
of premises. The output of the simulation contains attributes
representing the disease status of individual premises (and
their respective herds) and how the infection spreads across
premises within the network. These outputs also account for

topological characteristics such as connectivity between the
premises, proximity, and contact due to movements.

C. System Components

We leverage the Spark framework [7] to provide scalable
and fault-tolerant computing capabilities over a cluster of ma-
chines. Spark is used for writing applications to process large
amounts of data which can be stored in distributed file systems
(HDFS, S3), local file systems, or data streams, and includes
functionality such as map, reduce, filter, and join. Compared
to traditional MapReduce implementations, Spark allows in-
memory, iterative computations. This is particularly beneficial
for algorithms such as PageRank, and allows our analysis
operations to avoid disk I/O unless absolutely necessary. We
use Spark to generate disease transmission networks (DTNs)
from our epidemiological simulation output dataset, as well as
performing analysis of highly-influential herds based on the
DTN. To facilitate distribution of files across the cluster and
ensure data locality during computations, we use the Hadoop
Distributed File System (HDFS) [8] to store our dataset and
output files.

III. METHODOLOGY

In this study, our goal is to identify and classify highly
influential herds in the disease outbreak network. To achieve
this goal, we have composed a workflow that comprises
multiple analysis phases. As depicted in Figure 1, there are
3 major phases. In Phase 1, we perform data preprocessing
to extract features and create the disease transmission net-
work that is leveraged by subsequent analysis steps. Phase 2
generates global herd rankings and influence measures from
the DTN. Phase 3 focuses on characterizing highly influential
herds by studying their epidemic attributes and modeling the
relationship between the characteristics. We perform validation
and evaluation for each phase in Section IV.

A. Creating DTNs

NAADSM generates one output file per scenario. Results for
each iteration are assembled based on simulation time steps.
A data fragment from an iteration contains over 2000 input
variables and 10-20 output variables, including the outbreak
duration, number of infected premises, and vaccinations used.



Since scanning the raw data for each analysis step is not
efficient at this scale, we removed initially infected herds
from each of 3.2 million iterations. With the remainder of
the dataset, we generated a weighted directed graph called the
disease transmission network (DTN). The DTN is denoted as
G = (V,E), where V is the set of vertices, representing herds,
and E is the set of edges, representing infection propagation.
To create the DTN, we extract infection propagation pairs
from the dataset, which are tuples that include the infected
herd and source of infection. We use the Spark framework to
compute infection percentages for every infection propagation
pair, which are used as the weights for directed edges in the
graph. For example, if A and B are two vertices connected by
an edge with weight 1/5, then A is source of infection in 1
out of 5 instances where B is infected. Apart from removing
initially infected herds, we did not perform additional pruning
on the DTN because our methodology is robust to noise from
low-impact entities in the source dataset.

B. Preliminary Analysis: Geospatial Distance

After our initial creation of the disease transmission net-
work, we performed correlation analysis on the geospatial
distance between units and rate at which a unit infects others.
This evaluation served to test the functionality of the DTN as
well as to gain insight as to how disease spread interactions
behave spatially. Using the DTN, we calculated the infection
rate between herds using following formula:

InfectionRate(A,B) =
CountOfInfections(A,B)

SourceOfInfection(A)
(1)

Where:
SourceOfInfection(A): total infections from unit A
CountOfInfections(A,B): total infections that unit A
transmitted to unit B.

The infection rate as defined in Formula 1 is calculated
for every pair of herds in the DTN, as well as the geospatial
distance between herds. Using these points of comparison, we
calculated the Pearson Correlation Coefficient (PCC) for this
data, which was −0.048, signaling that there is almost no
correlation between the infection rate and distance between
herds. This experiment demonstrates that with our particular
scenario a diseased unit is no more likely to infect a herd in
close proximity than those at greater spatial distances.

C. Identifying Highly Influential Herds

Influential herds play a pivotal role in transmitting disease
to their neighbors by making outbreaks last longer or become
more severe. In these situations, the influence of a unit depends
on the influence of its neighbors. In other words, a unit has
high influence if it is infecting other highly influential units.
This type of interaction can be efficiently modeled by the
PageRank algorithm.

Fig. 2: Formation of an inverted graph of disease transmissions
for use with the PageRank algorithm.

1) PageRank Algorithm: PageRank was proposed by Larry
Page et al. [9] and used by the Google search engine to sort
search results by their relevance or importance. The algorithm
assigns a PageRank value to each web page, which describes
the probability that a random surfer (randomly clicking on
links) will arrive at the web page. The higher the PageRank
value, more important the web page is. In general, highly
linked pages are more important than pages with a low number
of incoming links. Further, the PageRank value of a particular
page determines how influential its outgoing links will be; if
a page has very few input links but some are from highly
linked web pages, then the page is ranked higher than a page
that has more, but less important input links. This means that a
website can achieve a high PageRank value either by having a
large number of incoming links or by being linked to from an
important page. This notion of importance is similar to being
influential; considerable research has been conducted on using
PageRank to determine influence [14], [15].

2) Using PageRank to Measure the Degree of Influence:
Construction of the DTN produces a weighted, directed graph,
where the weight of each edge is the rate at which one unit is
infected by another. As a result, the sum of input links’ weights
must be equal to 1. When a disease is transmitted from vertex
A to vertex B, we model the interaction as A influencing B.
Similarly, vertex A influences all of its downstream neighbors.
However, the PageRank algorithm computes the importance of
entities based on input links, whereas in our case the influence
of a vertex is decided by output links. Therefore, we invert the
direction of edges in the graph without changing their weights
to generate an inverted graph. This preserves the semantics
of the network and allows usage of the PageRank algorithm
without modification. A demonstration of an inverted graph is
provided in Figure 2.

D. Classifying Highly Influential Herds

After discovering influential herds, we provide two types
of classifications to understand their characteristics. First, we
classify the herds based on their likelihood to be super-
spreaders. Second, we perform localized classifications to
detect herds that have a particularly strong influence on another
herd but not necessarily the system as a whole.



In epidemiology, super-spreaders are a phenomenon that
is widely observed in disease outbreaks. A super-spreader
is an infected unit that spreads the disease disproportionally
to other herds [16]. For a given outbreak, there may exist
more than one super-spreader and the majority of individuals
infect multiple secondary contacts. The most recent SARS
outbreak involved super-spreading events (SSE) [17]. In this
section, we investigate classifying super-spreaders from the
group of highly influential herds. Classifying super-spreaders
helps provide more efficient planning that controls contacts
such as shipments or veterinarian visits.

1) Empirical Classification of Super-Spreaders: Super-
spreaders tend to follow the Pareto principle [18], also known
as the 80-20 rule, where approximately 20% of infected
individuals are responsible for 80% of causality [10]. A herd
is also considered to be a super-spreader if it is responsible
for a significantly larger percentage of transmission [19].
To detect super-spreaders, we measure the per-herd infection
contribution (contherdID) for each scenario by calculating the
percentage of total infections caused by each herd. Infection
contributions are collected from each scenario, averaged, and
then sorted. We apply the 80-20 rule to select the top 20% of
herds in descending order as probable super-spreaders, with
all herds of equal ranking in the top 20% considered. Using
this methodology, we observed that the top 23.43% infection
contributors were responsible for 68.85% of the infections.
This result provided a foundation for attribute-based modeling
and classification.

2) Model-Based Classification of Super-Spreaders: Super-
spreaders behave differently from the rest of the population,
but determining why a particular herd becomes a super-
spreader can provide high-level insight for disease spread
analysis. Potential features that often influence super-spreaders
include [16]:

• Degree of local infections: Number of units directly
infected by a herd

• Depth of disease transmission: Length of the traversal
path through the disease transmission network due to the
associated herd’s infection

• Rate of contribution: Percentage of the total number of
infected units

• Level of Infection: Relative position of the premise in the
infection chain hierarchy

We backtrace through the disease transmission network to
determine each of these properties. After collecting training
data for each herd across our subject dataset, we applied
multiple machine learning classifiers: support vector machines
(SVMs), random forests, and quadratic discriminant analysis
(QDA). An initial exploration of these models’ hyperpa-
rameters found that the classifications produced by SVMs
exhibited the highest performance. To train the SVMs, we
used stochastic gradient descent (SGD). SGD is a stochastic
method for finding local minima or maxima by updating a set
of parameters iteratively to minimize an objective function.
The major advantage of SGD is its efficiency and amenabil-
ity to parallel computation, which ensures scalability in our

particular use case [20].
3) Reachability Analysis via Localized Attributes: Up to

this point, discussion has revolved around determining influ-
ential herds across the entire disease transmission network.
However, there are often localized relationships between herds
that are significant but not highlighted by global analysis.
Determining localized influence for a particular subset of herds
is useful in situations where a planner wishes to isolate an
infection or slow the spread of disease. These relationships are
measured by the localized influence value, which is calculated
based on Formula 2:

Infl valij =
NPRi ∗NOCij

Avg distij
(2)

Where,
Infl valij= Influence value of herd i on herd j
NPRi= Normalized PageRank value (1-10) of herd i, repre-
senting global influence in the DTN
NOCij = Normalized occurrence count (1-10) of herd i when
herd j is infected
Avg distij is a measure of distance between herd i and herd
j, which is calculated by the following formula:

Avg distij =

∑n
k=1 distk(i, j)

n
(3)

Where,
n = Number of times herd i is infecting herd j
distk(i, j) = Distance between herd i and herd j in hops for
kth occurrence

This results in herds having more influence on those in
close proximity. For instance, a herd that is a single hop away
is more influential than a herd that is two hops away in the
DTN. Dividing NPRi by Avg distij gives an approximate
value of influence of herd i on herd j. By using NOCij , we
increase the importance of herds that are infected often by a
another herd.

IV. EVALUATION

A. Experimental setup

The benchmarks and evaluations carried out in this study
were performed on a cluster of 30 HP Z420 servers (8-
core Xeon E5-2560V2, 32 GB RAM, 1 TB disk). Distributed
computations were executed on Spark version 2.0 with the
OpenJDK JVM, version 1.8.0 92. Each host was configured
with Fedora 23 (Linux kernel 4.5.7). We used our epidemio-
logical test dataset from Colorado, USA, which was distributed
across the HDFS cluster (version 2.6.4), totaling 6.26 TB.
Additional scenarios set in Iowa, USA, were used to verify the
performance of our classifications, which consumed another
8.0 TB of disk space for a total dataset size of 14.26 TB.

B. Classifying Super-Spreaders with Machine Learning

Using the DTN to backtrace through herd interactions,
we generated training data based on features that commonly
indicate super-spreaders (as described in section III-D2). Herd



TABLE I: Accuracy for each machine learning classification
algorithm evaluated. To demonstrate generality, we also used
our SVM model on a different scenario set in Iowa, USA.

Classifier Accuracy
Quadratic Discriminant Analysis 83.97%
Random Forest Classifier 88.9%
Support Vector Machine (SVM) 90.02%

SVM, Iowa Dataset 93.50%

classifications were stored in this dataset as a binary value,
with 1 indicating a super-spreader and 0 representing a regular
herd. Our baseline classification via the 80-20 rule was used
as ground truth, and we applied several machine learning algo-
rithms on the training data. Classifications were implemented
with scikit-learn [20], and a randomized 90-10 split was used
for the training and testing datasets, respectively. As depicted
in Table I, the SVM model provided the highest accuracy.
However, it is worth noting that each of the machine learning
algorithms achieved reasonable accuracy based on our feature
set.

One of the primary benefits of generating machine learning
models is generalizability; if the model generalizes well, then
it can predict super-spreaders in new or unseen datasets with-
out needing to perform analysis over the disease transmission
network. To evaluate the generality of our SVM model trained
on the Colorado dataset, we obtained a second scenario set
in Iowa, USA, which consisted of 8 TB of simulation output.
Using the model, we were able to predict super-spreaders with
an accuracy of 93.50% as shown in Table I. This is likely due
to some similarities in parameters between the two scenarios,
as both simulated an outbreak of foot-and-mouth disease.

After the algorithms are fully trained, coefficients asso-
ciated with the features capture their respective impacts on
classification. We provide these coefficients as outputs during
the modeling process. Coefficients from our SVM classifier
are shown in Figure 3; positive weights suggest a positive
correlation with the output (classification as a super-spreader
or not), and vice versa. Based on these results, the degree
of local infections exhibits a strong correlation with the herd
in question being a super-spreader, which is also true of
SARS outbreaks [21]. Conversely, the level of infection in
the DTN hierarchy was negatively correlated with being a
super-spreader, and the contribution rate and depth of disease
transmission were not weighted as highly for this particular
model.

C. Statistical Evaluation of Super-Spreaders

To understand the composition of highly influential herds,
we applied a variety of statistical techniques on the data
produced by our disease transmission network. Our analysis
includes a t-test, ROC curves for the experiments, as well
as a breakdown of seeders, super-spreaders, and combined
influential herds.

1) Highly Influential Herds vs Super-Spreaders: We per-
formed a two-sample t-test to determine whether the tendency

Fig. 3: Feature coefficients from our SVM classifier; larger
values indicate more influential features.

to include super-spreaders in high- and low-PageRank herds
was statistically significant. In this evaluation, we assessed the
top 20% of PageRanked herds (likely super-spreaders) with the
next 20%. To conduct the t-test, we generated 40 data points
by randomly selecting 1000 herds from each set and noting
the count of super-spreaders. This experiment revealed a sig-
nificant difference between herds with high PageRank values
(x̄1 = 839.93, s1 = 11.26) and herds with low PageRank
values (x̄2 = 192.5, s2 = 9.9); t(76.72) = 1.84, p = 0.03452
for µ0 = 643. These results suggest that the mean number
of super-spreaders found in both groups is notably different.
Specifically, herds with high PageRank values contain 64.3%
more super-spreaders.

In the next part of this experiment, we analyzed the inclu-
sion of super-spreaders in the composition of highly influential
herds. We found 3747 probable super-spreaders using the
approach described in section III-D1. We then calculated the
number of herds having the top n PageRank values among
the 3747 super-spreaders, n ∈ {50, 100, 200, · · · , 18800}. The
ROC curve for this experiment is shown in Figure 4. Based on
the curve, the experiment resulted in high accuracy, meaning
super-spreaders account for a considerably large portion of
the overall set of influential herds. The reason behind this
result is that both groups infect a higher number of herds on
average; according to Figure 3, the degree of local infection
contributes most when classifying a herd as a super-spreader,
and herds with high PageRank values tend to infect a higher
number of herds overall as mentioned in III-C1. Moreover, we
can observe that the likelihood ratio is decreasing as we move
along horizontal axis. The part of curve with a high likelihood
ratio refers to herds with high influence values, whereas the
other part of the curve refers its counterpart.

2) Highly Influential Herds vs Seeders: This experiment
analyzes the involvement of seeder herds (herds that are
infected by the set of initially infected herds) in the evolution
of super-spreaders. As described in Section III-A, we remove
initially infected herds from the infection propagation pairs
and collect the rest of the data for analysis. Over the 3.2
million iterations, we found 6504 distinct seeders. We per-



Fig. 4: ROC curve for herds classified as super-spreaders
compared with herds that exhibited high PageRank values.

formed same experiment as described in the previous section
(IV-C1), except this time the number of herds having the top
n PageRank value are among 6504 seeders instead of super-
spreaders, n ∈ {50, 100, 200, · · · , 18800}. The ROC curve for
this experiment is shown in Figure 5; we can observe a small
peak initially, followed by monotonic increases afterwards.
The area under the curve is much less compared with the
previous experiment performed on super-spreaders. This result
suggests that seeders do not contribute to the composition of
highly influential herds as much as the super-spreaders. There
are likely two reasons for this: first, among the 6504 seeder
herds, most are classified as seeders very few times in the
overall dataset of 3.2 million simulated outbreaks, resulting in
a lower number of overall infections. Second, seeders often
infect herds with a low PageRank value, resulting in a little
contribution towards their own influence.

The true Positive Rate (TPR) and False Positive Rate (FPR)
used to create the ROC curves in the previous experiments are
calculated using following formula:

TPRn =
NIn
Tp

FPRn =
n−NIn
Tn

(4)

Where:
NIn = Intersection of super-spreaders or seeders with the top
n highly influential herds
Tp = Total number of super-spreaders or seeders
Tn = Total number of non-super-spreaders or non-seeders

3) Highly Influential Herds vs the Union of Seeders and
Super-Spreaders: To study the involvement of super-spreaders
and seeders combined as a single group, we computed the
union of the two sets to compare with highly influential
herds derived from PageRank values. Figure 6 plots the size
of each of these sets based on the top n PageRank values.
This demonstrates that about 3000 of the top herds are either

Fig. 5: ROC curve for herds classified as seeders compared
with herds that exhibited high PageRank values.

super-spreaders or seeders (with the majority being super-
spreaders), as the initial portion of the curve overlaps with
the identity line. After all the super-spreaders are accounted
for (n=7100), the union set follows the shape of the seeder
plot. This demonstrates that herds with the highest influence
are largely super-spreaders.

D. Scalability Evaluation

We measured the time taken by the Spark framework to
compute PageRank values of premises in the disease trans-
mission network for various combinations of data and cluster
sizes. From the 100,000 simulation outputs in our Colorado
dataset, we extracted disease transmission information in
the form of infection propagation pairs and executed our
PageRank implementation. We considered cluster sizes with
a varying number of nodes, each of which was accountable

Fig. 6: Seeders, super-spreaders, and their union based on the
top n PageRanked herds.



Fig. 7: Scalability of our approach executing under the Apache
Spark framework. By increasing the cluster size to 30 nodes,
we reduce the execution time by about 25%.

for four Spark workers. Figure 7 demonstrates the results of
this benchmark; the vertical axis contains the time taken to
perform the computation, with dataset sizes presented on the
horizontal axis. Clusters of 10 and 20 machines exhibited sim-
ilar execution times due to resource constraints that increased
synchronization delays between stages, but the cluster of 30
machines improved computation times by about 25% for the
full-sized dataset.

E. Analyzing Geographic Location in Super-Spreading Events

In Figure 8, we demonstrate the geographical distribution of
herds in our Colorado dataset. Each graph contains a heat map
depicting different approaches for classifying highly influential
premises. Herds with higher influence are highlighted by
brighter shades of red, whereas less influential herds are
drawn in progressively darker shades of green. Note that these
visualizations are based on the top 20% of the herds in the
dataset to increase the level of contrast between premises.
Three notable clusters can be seen in each of the subfigures,
one in the mid-left, and another two near the top- and bottom-
right.

Figure 8a contains herd PageRank values, while the premise
contribution to the overall infection (contherdID) is shown in
Figure 8b. Note that both heat maps are similar, indicating
that the super-spreaders detected by herd contributions are a
subcategory of the influential premises found via PageRank.
On the other hand, Figure 8c depicts the distance from
the hyperplane in our SVM classifier, which represents the
confidence of the classification. Positive values that are larger
(farther from the hyperplane) indicate super-spreaders with
high confidence (shown in brighter red), while larger negative
values indicate normal herds with high confidence (shown in
darker green). In both cases, values that are very close to the
hyperplane represent weak classifications.

As an alternative representation of this data, Table II con-
tains the top 10 influential premises (by herd ID numbers)
based on PageRank values, the contribution to the overall

infection (contherdID), and distance from the hyperplane from
our SVM model. Note that several of the premises appear in
all three result sets.

TABLE II: Top premise IDs discovered by the approaches
shown in Figure 8. Herds selected by multiple approaches are
displayed in bold.

Top Premises Based On:
PageRank

Values
Contribution
to Population

Distances from
SVM Hyperplane

1220 1683 11923
1845 1772 1845
1683 1620 1052
1834 1776 1573
1914 17314 1074
1772 9825 16264

11923 1172 1620
1776 11241 11515
1913 1619 43
1837 11923 1894

V. RELATED WORK

Influential herds transmit disease to their neighbors, ulti-
mately making outbreaks last longer or become more severe.
As a result, the influence of a herd depends largely on the
influence of its neighbors. Analysis of influence in epidemi-
ology has seen considerable study, with much of the work
revolving around the various characteristics of infected entities
and their impact on disease transmission [22], [23]. However,
these approaches generally examine standalone characteristics
and not the underlying network or relationships that result
from disease spread.

Social Network Analysis (SNA) focuses on human interac-
tions in social networks, but can be applied to analyze animal
epidemics as well. Considerable research has been conducted
on influence in social networks [14], [15], [24], [25], [26]. The
Independent Cascade (IC) model and Linear Threshold (LT)
model are commonly used to describe the influence of nodes
in directed graphs. The LT model declares a node as either
active or inactive based on a threshold and the sum of weights
of neighboring edges. On the other hand, in the IC model, each
active node is given an opportunity to activate its inactive
neighbors, with the process repeating until a steady state is
reached [27], [28]. In this case, active nodes are considered
to be highly influential. However, since both of these methods
rely on binary states (active or inactive), relative measures
between nodes are not supported.

Cha et al. studies the influence of users in Twitter based on
three metrics: in-degree, retweets and mentions. This approach
uses Spearman’s rank correlation coefficient to compare user
influence, and evaluates the behavior of the three metrics
for highly influential users [26]. An approach outlined by
Khrabrov and Cybenko [29] uses daily mentions of users on
Twitter as a basis for calculating different rank metrics such
as PageRank, drank, and StarRank to determine influence.



(a) The top 20% of premises based on PageR-
ank values.

(b) Premise contributions towards the overall
infection (contherdID).

(c) Super-spreader classifications using our
SVM machine learning model.

Fig. 8: Heat map of highly influential premises in our Colorado dataset.

Aggarwal et al. [15] proposes two algorithms, SteadyS-
tateSpread and RankedReplace, to determine information flow
representatives, a small group of authoritative figures to whom
the release of information leads to maximum spread. SteadyS-
tateSpread iteratively finds a candidate set of nodes with higher
steady state flow values as candidate representatives. This
method ignores the structural relationship of nodes, which
inspired the RankedReplace algorithm. In RankedReplace,
nodes are replaced iteratively and sorted in descending order
by their steady state flow values to maximize total flow [15].

Substantial effort has been devoted to identifying hotspots
that result in super-spreading events (SSEs). Lloyd-Smith et
al. defines a protocol to identify super-spreaders, which is ap-
plicable in understanding SARS outbreaks [19]. The protocol
suggests that the mean number of secondary infections from
a particular host follows a Poisson distribution and outliers
are often accountable for super-spreading events. However,
underestimation of the epidemic potential can occur when
field observations of mean secondary infections are low [30].
Fujie-Odagaki et al. focuses on intrinsically strong herd infec-
tiousness and social connections [21]. Our particular dataset,
however, does not reveal such information.

Epidemiological big data analysis systems include Google
Flu Trends [31], which uses web search data to model flu-
like symptoms in user queries and leverages the correlation
between medical searches and physician visits to estimate
influenza activity across the United States. The system pro-
vides results faster than traditional disease surveillance meth-
ods, and aids in the prediction and mitigation of seasonal
influenza epidemics. Galileo [32], [33], [34], [35] uses a graph-
based indexing scheme to enable analysis between entities in
multidimensional data, with support for spatial queries based
on proximity, polygons, or administrative boundaries [36].
SWAN [37] is a distributed knowledgebase for coordinating
and researching Alzheimer Disease. By using semantic web
concepts and variable privacy settings, researchers can collect
information and collaborate while also avoiding duplicated
effort. While SWAN handles data management, analytics
activities must be carried out using other software packages.

VI. CONCLUSIONS AND FUTURE WORK
In this study, we presented our methodology for identifying

epidemiologically influential premises and understanding their
characteristics over voluminous data. Identification of influ-
ential premises will help planners allocate limited resources
more effectively. Our methodology includes multiple analysis
components such as: (1) generating a disease network data
structure, (2) estimating the influence of a particular premise
using the PageRank algorithm, and (3) characterizing influ-
ential premises based on their epidemiological characteristics
and premise-based relevance.

RQ1: To achieve effective analysis with reasonable latency,
we extract entire chains of infections from the output dataset
and construct a graph-based disease transmission network
(DTN) that represents a holistic view of disease transmissions
by maintaining the probability of infections between each
herd pair. The DTN is a compact data structure that is less
than 0.002% of the original dataset size. Since infections
between herds are observed over 3.2 million iteration outputs,
maintaining this pairwise probability with the DTN reduces the
number of I/O accesses (encompassing both disk and network
I/O) to the dataset significantly.

RQ2: We leverage the PageRank algorithm to estimate the
influence of each herd in the DTN. The PageRank associated
with a premise represents the probability that it contributes to
a random infection chain. Our statistical analysis demonstrates
that super-spreaders are well-represented among the highly in-
fluential premises. We have modeled the relationship between
features of a premise extracted from the DTN and the likeli-
hood of being a super-spreader using support vector machines
(SVMs). Our model provides an accuracy of greater than 90%
for FMD outbreaks in the state of Colorado; furthermore, this
model transfers well and has an accuracy of over 93% when
analyzing likely outbreaks in Iowa. This result demonstrates
the generalizability of our methodology.

RQ3: Our analysis and experiments were performed using
Apache Spark and were distributed across a cluster of com-
puting resources. This approach was shown to be effective and
scalable in our benchmark evaluation.

As part of our future work we plan to explore the feature



space to improve the accuracy of our super-spreader detection
model. We will extend the DTN data structure to include
other features such as types of premises. Another avenue for
future research is to leverage input parameters that are used
for simulation variants to model the relationship between input
features and highly influential premises.

ACKNOWLEDGMENT

This work was supported by the US Department of Home-
land Security [HSHQDC-13-C-B0018, D15PC00279]; and the
US National Science Foundation’s Advanced Cyberinfras-
tructure and Computer Systems Research Programs [ACI-
1553685, CNS-1253908].

REFERENCES

[1] E. Brooks-Pollock, M. de Jong, M. J. Keeling, D. Klinkenberg, and J. L.
Wood, “Eight challenges in modelling infectious livestock diseases,”
Epidemics, vol. 10, pp. 1–5, 2015.

[2] M. J. Keeling and P. Rohani, Modeling infectious diseases in humans
and animals. Princeton University Press, 2008.

[3] N. Harvey, A. Reeves, M. A. Schoenbaum et al., “The north american
animal disease spread model: A simulation model to assist decision
making in evaluating animal disease incursions,” Preventive veterinary
medicine, vol. 82, no. 3, pp. 176–197, 2007.

[4] D. Pendell, J. Leatherman, T. Schroeder, and G. Alward, “The economic
impacts of a foot-and-mouth disease outbreak: a regional analysis,”
Journal of Agricultural and Applied Economics, vol. 39, no. 0, pp. 19–
33, 2007.

[5] C. Green, T. Whiting, G. Duizer, D. Douma, H. Kloeze, W. Lees, and
A. Reeves, “Simulation modeling of alternative control strategies for an
HPAI outbreak using NAADSM,” in Canadian Association of Veterinary
Epidemiology Preventive Medicine (CAVEPM) Meeting, May 29 - 30
2010, Guelph, Ontario, Canada, 2010.

[6] K. Portacci, A. Reeves, B. Corso, and M. Salman, “Evaluation of
vaccination strategies for an outbreak of pseudorabies virus in US
commercial swine using the NAADSM,” in ISVEE 12: Proceedings
of the 12th Symposium of the International Society for Veterinary
Epidemiology and Economics, Durban, South Africa, 2009, p. 78.

[7] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the
2nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10, 2010, pp. 10–10.

[8] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop dis-
tributed file system,” in Proceedings of the 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST), ser. MSST ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–10.

[9] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: bringing order to the web.” 1999.

[10] Wikipedia, “Pareto principle — wikipedia, the free encyclopedia,” 2016,
[Online; accessed 25-July-2016]. [Online]. Available: \url{https://en.
wikipedia.org/w/index.php?title=Pareto principle&oldid=731439344}

[11] Z. Sui, M. Malensek, N. Harvey, and S. Pallickara, “Autonomous
orchestration of distributed discrete event simulations in the presence
of resource uncertainty,” ACM Trans. Auton. Adapt. Syst., vol. 10, no. 3,
pp. 18:1–18:20, Sep. 2015.

[12] W. Budgaga, M. Malensek, S. L. Pallickara, N. Harvey, F. J. Breidt,
and S. Pallickara, “Predictive analytics using statistical, learning, and
ensemble methods to support real-time exploration of discrete event
simulations,” Future Gener. Comput. Syst., vol. 56, no. C, pp. 360–374,
Mar. 2016.

[13] M. Malensek, W. Budgaga, S. L. Pallickara, N. Harvey, F. J. Breidt, and
S. Pallickara, “Using distributed analytics to enable real-time exploration
of discrete event simulations,” in Proceedings of the 2014 IEEE/ACM
7th International Conference on Utility and Cloud Computing, ser. UCC
’14. Washington, DC, USA: IEEE Computer Society, 2014, pp. 49–58.

[14] B. Xiang, Q. Liu, E. Chen, H. Xiong, Y. Zheng, and Y. Yang, “Pagerank
with priors: An influence propagation perspective.” in IJCAI.

[15] C. C. Aggarwal, A. Khan, and X. Yan, “On flow authority discovery in
social networks.” in SDM. SIAM, 2011, pp. 522–533.

[16] A. P. Galvani and R. M. May, “Epidemiology: dimensions of super-
spreading,” Nature, vol. 438, no. 7066, pp. 293–295, 2005.

[17] Z. Shen, F. Ning, W. Zhou, X. He, C. Lin, D. P. Chin, Z. Zhu, and
A. Schuchat, “Superspreading sars events, beijing, 2003,” Emerging
infectious diseases, vol. 10, no. 2, pp. 256–260, 2004.

[18] M. Woolhouse, D. Shaw, L. Matthews, W.-C. Liu, D. Mellor, and
M. Thomas, “Epidemiological implications of the contact network
structure for cattle farms and the 20–80 rule,” Biology Letters, vol. 1,
no. 3, pp. 350–352, 2005.

[19] J. O. Lloyd-Smith, S. J. Schreiber, P. E. Kopp, and W. M. Getz, “Super-
spreading and the effect of individual variation on disease emergence,”
Nature, vol. 438, no. 7066, pp. 355–359, 2005.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort et al., “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12, pp.
2825–2830, 2011.

[21] R. Fujie and T. Odagaki, “Effects of superspreaders in spread of
epidemic,” Physica A: Statistical Mechanics and its Applications, vol.
374, no. 2, pp. 843–852, 2007.
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