AGILE
JEVELOPMENT
WITH XP

IAN MCFARLAND, PRINCIPAL
PIVOTAL COMPUTER SYSTEMS

COPYRIGHT © 2006




R

¢ An agile development consultancy
¢ Java, Ruby on Rails, AJAX/Web 2.0
¢ Co-development and Coaching

¢ Fishing and teaching to fish







Al

¢ A family of development methodologies® with
common goals:

S

s¢ Short 1terations

A

¢ Change-friendly

Al

S Aligned with real customer needs

* Scrum, XP, Crystal, Context-Driven Testing, Lean Development,
RUP, or anything else that fits the principles of agile




Agtle values...

s¢ Individuals and interactions over processes and tools

\

¢ Working software over comprehensive documentation

A

st Customer collaboration over contract negotiation

N

¢ Responding to change over following a plan

Al

2¢ http://www.agilemanifesto.org/




¢ One of the (if not the) leading Agile

methodologies

Al

¢ A disciplined methodology with an unfortunate

name

A

¢ A collection of industry best practices, turned
up a few notches, and integrated into a single
development methodology

\/

2 Not analogous to extreme sports




KA

5¢ Clear, customer visible stories

R

¢ Test-Driven Development

S

2t Continuous Integration

s¢ Short Iterations

A

2t Pair Programming

A

3¢ Extensive Customer Involvement




Al

“¢ The focus on customer-visible stories keeps

development concrete, and fights over-
architecture

R

2 It reminds us why were doing the work 1n the
first place

KA

2¢ It forces us to justity our design choices,
grounding them in the real customer need




Al

“¢ Stories are estimated each week during a
meeting traditionally called 7he Planning Game

A

¢ Stories are broken down into units of 1, 2 or 3
points

R

¢ Points measure complexity, not duration

Al

2t Larger stories are broken down into smaller
stories that are 3 points’ worth or smaller

R

¢ The customer prioritizes the work, informed by
the complexity estimates




A

‘¢ People are better at estimating complexity than
duration

A

2 Tasks have fractal complexity: Small tasks are
more predietable than large ones

Al

¢ Exposing the cost of features and giving control

to the customer creates alignment between the
developer and the customer




¢ One point: | know exactly how to do this, and
can do it in half a day.

A

#t Two points: | know exactly how to do this, but it
will be some work.

Al

%t Three points: “Somehow we will implement this
feature.”

Al

3¢ Three points almost always turns into more, and
1s a big red flag that the story needs to be broken

down 1nto smaller stories.




KA

¢ A focused team gets about as much done each
week as it did the week before

A

¢ The number of points completed in one week 1s
an excellent predictor of the number of points

completed in the next

3¢ Predictable results build trust between
developer and customer




¢ You write the tests before you write the code
‘¢ Separates requirements from implementation

¢ Produces an executable specification, and
documentation that stays in sync with the code

3¢ No code without a test

7 101% test coverage (well, at least at the start.)







A

2t The obvious reasons, but they're secondary

The real reasons:

A

“¢ Separating requirements from implementation
frees you from the tyranny of preoptimization

A

IS Driving from tests forces modular, usable

design

A

2t Complete test coverage lets you refactor with

1mpunity




¢ Write a test that expresses what your code 1s

supposed to do (and that fails)

Al

% ...and often you’ll write several layers of failing
test before you write a line of code

3¢ Write code that makes the tests pass

Al

2 Refactor the code to improve design, reduce
duplication, improve code clarity

Al

st Make sure the tests still pass when you’re done

3¢ Check 1n




A

“¢ Everyone runs the entire test suite before
submitting

¢ The continuous build checks out the trunk,

builds it, and runs all tests

A

2¢ Problems are caught early, when they’re easy to

fix

S

¢ The entire application 1s kept in a deployable
state from the first week




Al

2¢ One week iterations make for easier course
corrections, and shorten the feedback cycle

Al

IS Requirements change as the customer has a

chance to validate the design through play
testing

A

¢ Complete test coverage and alignment between

customer and developer make course
corrections painless instead of arduous, cheap

instead of expensive




Al

us Probably the most controversial part of XP

A

¢ How can it be faster for two developers to work
on the same problem? Surely it’s faster if they
work on two separate problems in parallel...

R

¢ Yes, we actually work this way, with two
developers working on a single machine.




¢ Developers will instinctively ‘pair program’
when one introduces another to a new code

base

¢ Developers will instinctively work together to
solve hard design problems

But...

¢ Developers don't always want to be so closely
scrutinized.




‘¢ Pairing accelerates knowledge transfer

A

2 Pairing makes deep problems shallow

R

¢ Your 80/20 rule overlaps favorably with your
partner’'s 80/20 rule

R

’¢ Pairing keeps you focused

A

¢ Pairing keeps you honest




R

7 Ask yourself what percentage of your
development time you spend...

i ...stuck on some ditficult problem
% ...stuck on some trivial problem

“¢...trying to choose between two
implementation choices

\\/

%t ...reading email or news or blog posts




R

¢ The customer owns the priorities, the developer
owns the cost estimates

Al

2 A feature 1sn't done until it's deployed to the
demo server and approved by the customer

The results:

Al

¢ Features are reaﬂy done when they’re
marked done

¢ The customer and developer are aligned 1n
reaching their common goal




NA
&\

A
K\

A
N\

A
&\

The Planning Game
The daily stand-up
Red-Green-Refactor (sync-green-submit)

Deployment to demo and customer approval




KA

2t Pivotal offers a three week apprenticeship
program on agile development using Ruby on

Rails from our San Francisco office

A

2¢ For more information, contact me.

[an McFarland <ian@pivotalst.com>




