
Agile
Development

with XP
I a n M c F a r l a n d , P r i n c i p a l
P i v o t a l C o m p u t e r S y s t e m s

Copyright © 2006

Who are we?

An agile development consultancy

Java, Ruby on Rails, AJAX/Web 2.0

Co-development and Coaching

Fishing and teaching to fish

Who are you?

Agile Development

A family of development methodologies* with
common goals:

Short iterations

Change-friendly

Aligned with real customer needs

* Scrum, XP, Crystal, Context-Driven Testing, Lean Development,
 RUP, or anything else that fits the principles of agile

Agile Manifesto

Agile values...

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

http://www.agilemanifesto.org/

Extreme
Programming

One of the (if not the) leading Agile
methodologies

A disciplined methodology with an unfortunate
name

A collection of industry best practices, turned
up a few notches, and integrated into a single
development methodology

Not analogous to extreme sports

XP: What is it?

Clear, customer visible stories

Test-Driven Development

Continuous Integration

Short Iterations

Pair Programming

Extensive Customer Involvement

Customer-Visible
Stories

The focus on customer-visible stories keeps
development concrete, and fights over-
architecture

It reminds us why we’re doing the work in the
first place

It forces us to justify our design choices,
grounding them in the real customer need

The Planning Game
and the Point System

Stories are estimated each week during a
meeting traditionally called The Planning Game

Stories are broken down into units of 1, 2 or 3
points

Points measure complexity, not duration

Larger stories are broken down into smaller
stories that are 3 points’ worth or smaller

The customer prioritizes the work, informed by
the complexity estimates

Task Estimating

People are better at estimating complexity than
duration

Tasks have fractal complexity: Small tasks are
more predictable than large ones

Exposing the cost of features and giving control
to the customer creates alignment between the
developer and the customer

The Point System

One point: I know exactly how to do this, and
can do it in half a day.

Two points: I know exactly how to do this, but it
will be some work.

Three points: “Somehow we will implement this
feature.”

Three points almost always turns into more, and
is a big red flag that the story needs to be broken
down into smaller stories.

Velocity Tracking

A focused team gets about as much done each
week as it did the week before

The number of points completed in one week is
an excellent predictor of the number of points
completed in the next

Predictable results build trust between
developer and customer

Test-Driven
Development

You write the tests before you write the code

Separates requirements from implementation

Produces an executable specification, and
documentation that stays in sync with the code

No code without a test

101% test coverage (well, at least at the start.)

Why do we care so
much about tests?

The obvious reasons, but they’re secondary

Why do we care so
much about tests?

The obvious reasons, but they’re secondary

The real reasons:

Separating requirements from implementation
frees you from the tyranny of preoptimization

Driving from tests forces modular, usable
design

Complete test coverage lets you refactor with
impunity

Red-Green-Refactor

Write a test that expresses what your code is
supposed to do (and that fails)

...and often you’ll write several layers of failing
test before you write a line of code

Write code that makes the tests pass

Refactor the code to improve design, reduce
duplication, improve code clarity

Make sure the tests still pass when you’re done

Check in

Continuous
Integration

Everyone runs the entire test suite before
submitting

The continuous build checks out the trunk,
builds it, and runs all tests

Problems are caught early, when they’re easy to
fix

The entire application is kept in a deployable
state from the first week

Short Iterations

One week iterations make for easier course
corrections, and shorten the feedback cycle

Requirements change as the customer has a
chance to validate the design through play
testing

Complete test coverage and alignment between
customer and developer make course
corrections painless instead of arduous, cheap
instead of expensive

Pair Programming

Probably the most controversial part of XP

How can it be faster for two developers to work
on the same problem? Surely it’s faster if they
work on two separate problems in parallel...

Yes, we actually work this way, with two
developers working on a single machine.

We do this naturally

Developers will instinctively ‘pair program’
when one introduces another to a new code
base

Developers will instinctively work together to
solve hard design problems

But...

Developers don’t always want to be so closely
scrutinized.

How Pairing Works

Pairing accelerates knowledge transfer

Pairing makes deep problems shallow

Your 80/20 rule overlaps favorably with your
partner’s 80/20 rule

Pairing keeps you focused

Pairing keeps you honest

How do you write
code?

Ask yourself what percentage of your
development time you spend...

...stuck on some difficult problem

...stuck on some trivial problem

...trying to choose between two
implementation choices

...reading email or news or blog posts

Customer
Involvement

The customer owns the priorities, the developer
owns the cost estimates

A feature isn’t done until it’s deployed to the
demo server and approved by the customer

The results:

Features are really done when they’re
marked done

The customer and developer are aligned in
reaching their common goal

The Agile Rhythm

The Planning Game

The daily stand-up

Red-Green-Refactor (sync-green-submit)

Deployment to demo and customer approval

Q&A

Pivotal offers a three week apprenticeship
program on agile development using Ruby on
Rails from our San Francisco office

For more information, contact me.

Ian McFarland <ian@pivotalsf.com>

