NEUROCOMPUTING

ELS VIE Neurocomputing 32-33 (2000) 1095-1102

www.elsevier.com/locate/neucom

PARALLEL NEUROSYS: A system for the simulation of
very large networks of biologically accurate neurons on
parallel computers

Peter Pacheco®*, Marcelo Camperi®, Toshi Uchino®

“Computer Science Department, University of San Francisco, 2130 Fulton St., San Francisco,
CA 94117, USA
bPhysics Department, University of San Francisco, 2130 Fulton St., San Francisco, CA 94117, USA

Accepted 13 January 2000

Abstract

We present a software package for the simulation of very large neuronal networks on parallel
computers. The package can be run on any system with an implementation of the Message
Passing Interface standard. We also present some example results for a simple neuronal model
in networks of up to a quarter of a million neurons. The full software package as well as usage
and installation guidelines can be found in [http://cs.usfca.edu/neurosys]. © 2000 Elsevier
Science B.V. All rights reserved.

Keywords: Very large networks; Parallel computers; MPI; Clusters

1. Introduction

Since the pioneering research of Hodgkin, Huxley, and Katz, work has continued
on improving single-neuron models and on arranging these models into networks of
increasing sophistication. However, computational power often severely limits the
complexity of the neuronal model one can study or the effective number of neurons
that can be included in a network. Multi-compartment neuron models that attempt to
account for many known physiological aspects of a neuron can require hundreds of
equations. Furthermore, even when the neuron models are kept simple, they still may

* Corresponding author. Tel.: + 1-415-422-6630; fax: + 1-415-422-5800.
E-mail address: peter@usfca.edu (P. Pacheco).

0925-2312/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.
PII: S0925-2312(00)00283-6



1096 P. Pacheco et al. | Neurocomputing 32-33 (2000) 1095-1102

require from 2 to around 10 differential equations. Thus, trying to model a large
network of such neurons may prove to be a formidable computational task.

A great deal can be learned from single-cell modeling or using networks with very
few simple model neurons. Indeed, great insight into dynamical behavior can be
gathered with just two neurons. However, sometimes very large systems are
needed, as there may be emergent complex behaviors in large networks without
a small network counterpart. Moreover, statistical properties of model firing rates
and synaptic transmission may not be representative if models are drastically scaled
down.

Thus, it is clear that the need to go beyond the capabilities of existing simulations is
real and pressing. Given the nature of the problem and some obvious qualitative and
“philosophical” connections between networks of neurons and parallel computers, it
is almost inevitable to conclude that programming on parallel systems is the natural
solution for large-scale neuronal network simulations.

In this work we present an outgrowth of a project started in the University of San
Francisco’s Applied Mathematics Research Laboratory. The goal of the project was
to produce powerful, portable, modular, and readily accessible software. The program
only uses freely available software libraries and runs on commonly available hard-
ware. A user only has to input the desired neuronal model (in the form of a set of
differential equations and initial conditions) and the structure of the network, without
having to learn anything beyond the handling of ASCII files and some rudiments of
C syntax. The output of the system is an animated depiction of the network, which can
show, by suitable use of colors, time-dependent changes in such variables as mem-
brane voltages and synaptic currents. The system obtains parallelism through use of
the Message Passing Interface or MPI standard, and it is well suited to run on
low-cost, parallel computers built from commodity hardware.

In the remainder of this paper we briefly discuss the Message Passing Interface
standard, commodity clusters, the system, and some results we have obtained which
illustrate the importance of simulating large networks and the scalability of the
system.

2. The message passing interface standard for parallel computers

A program written in ANSI C will compile and run on any computer with an
ANSI compiler, despite possibly enormous differences among hardware systems. The
Message Passing Interface (MPI) Forum [1,2] wanted to achieve something similar
for parallel programs. They developed a standard for parallel programming by
specifying a library of functions that can be called from C or Fortran programs. The
foundation of this library is a group of functions that can be used to achieve
parallelism by message passing, the transmitting of data from one process to another
by using “send” and “receive” functions. The MPI functions take care of the inter-
process sharing and distribution of data, and several other issues, such as
synchronization of processors. A program written using the MPI standard will run on
any parallel hardware with an MPI implementation installed — regardless of underlying



P. Pacheco et al. | Neurocomputing 32-33 (2000) 1095-1102 1097

architecture. Furthermore, there are several free MPI implementations that can be
installed on a vast range of hardware [3,8].

3. Commodity supercomputers

With recent advances in high-speed networks and improved microprocessor perfor-
mance, it has become possible to obtain extremely high performance from commodity
hardware at a small fraction of the cost required for commercial systems, such as the
Cray T3E or the SGI Origin 2000. Authors distinguish between two types of systems:
networks of workstations (NOWs) [6] and Beowulf clusters [7]. Both are built by
interconnecting a collection of inexpensive computers using a relatively inexpensive
network such as 10- or 100-Megabit ethernet. The principal distinction is that in
a NOW, the computers, or nodes, are accessible individually to users for general,
sequential tasks, and parallel programs “scavenge” available CPU cycles. The differ-
ent nodes do not need to have any special software installed and may physically reside
anywhere. A user starts a “cluster-aware” process from a central node, which has
parallel software (such as MPI) installed and a list of IP addresses of the workstations
in the NOW. On the other hand, the nodes of a Beowulf cluster are dedicated to the
parallel system: a user only accesses them if he or she is running a parallel program.
Further, the Beowulf interconnection network is isolated: the network is used exclus-
ively for loading programs onto the nodes and communication among the nodes of
running parallel programs. Thus, using off-the-shelf hardware and specialized (but
freely available) software, NOWs and Beowulf clusters provide institutions and users
with the means to achieve a powerful and relatively inexpensive parallel-computing
platform.

4. The system

User input to the system consists of two main components:

e A Hodgkin-Huxley style model for single-cell and synaptic dynamics in the form of
a set of differential equations written in C. This includes a set of model parameter
values.

e A directed graph describing the interconnection among neurons in the form of an
adjacency list. This is an ASCII file listing the neurons and their interconnections.

The directed graph is automatically partitioned among the available processors by
assigning each processor the same number of neurons. After the network is par-
titioned, each processor builds a system of differential equations involving the vari-
ables representing the neurons in its subnetwork and synaptic currents from neurons
that interact with neurons in its subnetwork. Then, a solver computes the solution.
Currently we use a parallel solver based on the fourth-order Runge-Kutta method.
Depending on the host computer capabilities, the solution can be stored in a single file
or it can be distributed across multiple files (one per processor).



1098 P. Pacheco et al. | Neurocomputing 32-33 (2000) 1095-1102

Fig. 1. A typical “Neurondiz” display output.

In either case, the visualization software takes the adjacency list and the output
from the solver, displays the network and, by varying the colors of the nodes and
edges of the graph, gives an animated depiction of its time-dependent behavior (see
Fig. 1). The visualization system employs a master-slave model. One processor is
devoted to managing the display, while the remaining processors compute its con-
tents. The visualization software currently uses the MPE library of functions, which is
distributed with the freely available MPICH [3] implementation of the MPI library.
In order to insure portability and high-performance, all of the code is written in ANSI
C using the MPI-1 library of communication functions. Input/output is currently
carried out with the standard I/O libraries in C.

For further details on the design and use of the program, see [9].

5. Some example results

In this section we present a couple of examples. The first illustrates the importance
of network size in statistical analyses. The second shows the scalability of the software.



P. Pacheco et al. | Neurocomputing 32-33 (2000) 1095-1102 1099

0.20
o 0.15 4
?
£
® 0.10
C
o
[0]
8

0.05

0.00

T T T T T T T T T
0 2 4 6 8 10 12 14 16 18
Number of Neurons (Log,)

Fig. 2. Degree of network synchrony as a function of the number of neurons for otherwise similar networks.
Large coherence measures determined for small networks may not be representative of systems’ behaviors.

As our test example, we used the single-cell model and parameter values found in [4],
following the usual Hodgkin-Huxley dynamics. Moreover, we assumed the synaptic
gating variable s follows first-order kinetics:

ds s

— =FV)1 —s)——

g = F =9 =,
where F(V) is a sigmoidal function. The total synaptic input drive into a neuron is
given by

Isyn = gsSlol(V - VS):

where

1
Stot = N ZSij.

Here N is the number of neurons, the sum is over incident neurons, and ¢; = + 1,
depending on whether the incident synaptic current is excitatory or inhibitory.

The neurons were arranged in a square grid, and the interconnections were
generated using a random number generator: the probability that any two neurons
are interconnected is proportional to a decaying exponential function of the distance



1100 P. Pacheco et al. | Neurocomputing 32-33 (2000) 1095-1102

between the two neurons. In order to reduce communication overhead, any intercon-
nections joining neurons belonging to non-consecutive processors are deleted.

Computations for this paper were carried out on USF’s NOW. It consists of 16
dual-processor Pentium II computers connected by a fast-ethernet switch. The nodes
run Linux, a free version of the Unix operating system. Both the MPICH [3] and
LAM [8] versions of MPI are installed on the systems.

In the first test, we measured the network coherence of networks containing from
2 to 2'8 neurons. The coherence, Xy, measures the network’s degree of synchrony as
a function of the number of neurons, V. It was suggested by Hansel et al., in [5], and is
defined as,

5 CAN(8)D, — {Ay(O?
N TUNYE LKV — Vi0)y2]

with Ay(t

K

ZIH

were <), is time average and V(t) is the time-dependent membrane voltage for neuron
i. Results of the simulations are given in Fig. 2. These suggest that large coherence
measures determined for small networks may not be representative of large networks
with the same neuron models and similar interconnection structures.

The following chart illustrates the scalability of the differential equation solver
running on the USF NOW with the MPICH implementation of MPI (Times are in
seconds).

Neurons 1024 4096 16384 65536 262144
Processors

1 496 2636 10870 37120 —

2 257 1404 6119 21367 —

4 135 638 3107 10664 —

8 76 319 1511 5371 22570
16 43 160 694 2648 11269
32 29 85 327 1241 —

Another measure of parallel performance is the efficiency. This is the ratio of the
runtime on one processor to the product of the number of processors multiplied by the
parallel runtime:

E(N, p) — Tserial(N) ,
prarallel(Nﬂ p)

where N is the number of neurons, and p is the number of processors. Fig. 3 shows
that for systems with more than 4096 neurons, the solver maintained efficiencies well
above 0.75 and surprisingly, for very large systems, efficiencies actually improved as
the number of processors was increased.



P. Pacheco et al. | Neurocomputing 32-33 (2000) 1095-1102 1101

1.00
0.75
5, =
(]
% =
< —A
£ 050
[i%}
0.25
0.00 T T T T T T T T
0 4 8 12 16 20 24 28 32

Processor Count

Fig. 3. Efficiency of a run as a function of the number of processors used (triangles = 1k neurons,
circles = 4 k, squares = 16 k, and diamonds = 64 k neurons, respectively).

6. Conclusions and directions for future work

Our preliminary results suggest that Parallel Neurosys will be very useful in the
study of large networks of biologically accurate neurons. Thus we plan to continue
both development of the system and to use it in the study of large networks of
a variety of neuronal models.

Specific improvements planned for future systems include an improved user inter-
face for both the differential equation solver and the visualization program. We also
plan to look into the use of other methods for solving the differential equations, better
automatic partitioning of neurons among processors, and the use of the MPI-2 I/O
functions.

Acknowledgements

We thank the National Partnership for Advanced Computational Infrastructure
for a grant of computer time on the Cray T3E at the San Diego Supercomputer
Center.

References

[1] http://www.mpi-forum.org.
[2] P. Pacheco, Parallel Programming with MPI, Morgan Kaufmann, San Francisco, 1997.



1102 P. Pacheco et al. | Neurocomputing 32-33 (2000) 1095-1102

[3] http:// www.mcs.anl.gov/mpi.

[4] J. White et al.,, J. Comput. Neurosci. 5 (1998) 5-16.
[5] D. Hansel et al., Neural Comput. 10 (1998) 467-483.
[6] http://www.rdt.monash.edu.au/ ~ rajkumar/tfcc.

[7] http://www.beowulf.org.

[8] http://www.mpi.nd.edu/lam.

[9] http://cs.usfca.edu/neurosys,.

Peter Pacheco is associate professor of Mathematics and associate professor and
chair of Computer Science at the University of San Francisco. He is the author of
the book, Parallel Programming with MPI, and he is the co-author of papers on the
use of parallel computing in circuit simulation. He has worked on parallel
programs in linear algebra, computational chemistry, and speech recognition. He
received his Ph.D. in Mathematics from Florida State University.

Marcelo Camperi is an assistant professor of physics at the University of San
Francisco. He received his Ph.D. in Physics from Boston University for Math-
ematical Physics. He works in theoretical neuroscience and computational phys-
ics. His current interests include simulating very large networks on parallel
computers and dynamical mechanisms for working memory in the prefrontal
cortex.

Toshi Uchino is a graduate student in computer science at the University of San
Francisco. He received a BA in English in Tokyo Japan, and another BA in
Psychology from USF. He is currently writing his master’s thesis on simulations of
very large neural networks on parallel computing systems. He is planning to
pursue his interests in cognitive/neuroscience.




