
ECS120 Introduction to the Theory of Computation
Fall Quarter 2007

Discussion Notes
Wednesday, November 7, 2007

Context-Free Languages

Pushdown Automata

A pushdown automaton is a 6-tuple P = (Q,Σ,Γ, δ, q0, F) where:
1. Q is the finite set of states
2. Σ is the finite input alphabet
3. Γ is the finite stack alphabet
4. q0 ∈ Q is the start state

5. δ : Q× Σε × Γε → P(Q× Γε)
is the transition function

6. F ⊆ Q is the set of accept states

Computation in a pushdown automaton is a bit more complicated than in a DFA or NFA. The
PDA P accepts input w = w1w2 · · ·wm, where wi ∈ Σε, if a sequence of states r0, r1, . . . , rm ∈ Q
and strings s0, s1, . . . , sm ∈ Γ∗ exist such that:

1. r0 = q0 and s0 = ε (begin with start state and an empty stack)

2. for i = 0, . . . ,m − 1 we have (ri+1, b) ∈ δ(ri, wi+1, a) where si = at and si+1 = bt for some
a, b ∈ Γε and t ∈ Γ∗

3. rm ∈ F (end with an accept state)

Consider the PDA from last week for the language L = { an bn |n ≥ 0 }:

1

Let’s work an example to see the computation in progress. Consider the word aabb.

at input pop next push stack
0 q0 ε

1 q0 ε ε q1 $ $
2 q1 a ε q1 a a$
3 q1 a ε q1 a aa$
4 q1 b a q2 ε a$
5 q2 b a q2 ε $
6 q2 ε $ q3 ε ε
↑ ↑ ↑ ↑
i w r s

Therefore we have:
i 0 1 2 3 4 5 6
w − ε a a b b ε

r q0 q1 q1 q1 q2 q2 q3
s ε $ a$ aa$ a$ $ ε

which satisfies our requirements.

Closure Properties

Context-free languages are closed under union, concatenation, and star.

You were asked to prove CFLs are closed under the star operation for homework 5. (The proof is
in the homework solutions.)

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be context-free grammars.

Let G3 = (V3,Σ, R3, S3) be a CFG such that L(G3) = L(G1) ∪ L(G2) where:

• V3 = V1 ∪ V2 ∪ S3

• R3 = R1 ∪R2 ∪ (S3 → S1 |S2)

Let G4 = (V4,Σ, R4, S4) be a CFG such that L(G4) = L(G1) ◦ L(G2) where:

• V4 = V1 ∪ V2 ∪ S4

• R4 = R1 ∪R2 ∪ (S4 → S1 S2)

However, CFLs are not closed under complementation and intersection.

2

Example: PDA ∩ DFA

Let C be a context-free language and R be a regular language. Prove that the
language C ∩ R is context free. (Sipser 2.18)

This problem is answered on page 133 of your book.

Let P = (Qp,Σ,Γ, δp, p0, Fp) be a PDA such that L(P) = C and D = (Qd,Σ, δd, d0, Fd) a DFA
such that L(D) = R.

Let P ′ = (Q,Σ,Γ, δ, q0, F) be a PDA such that L(P ′) = C ∩R where:

• Q = Qp ×Qd

• q ∈ F if and only if q ∈ Fp × Fd

• q0 = (p0, d0)

The transition function δ will do what P does and keep track of the states of D. More formally,
let pi, pj ∈ Qp, di ∈ Qd, α ∈ Σ− ε, and β, γ ∈ Γ.

1. For every transition in δp where:

(pi, α, β)→ (pj , γ)

Add the following transition to δ for every state di ∈ Qd :

((pi, di), α, β)→ ((pj , δd(di, α)), γ)

2. For every transition in δp where:

(pi, ε, β)→ (pj , γ)

Add the following transition to δ for every state di ∈ Qd :

((pi, di), ε, β)→ ((pj , di), γ)

3

Language Hierarchy

With the introduction of Turing Machines, we have now seen several different types of languages.
In general, there are the languages which are accepted by finite automata, pushdown automata,
and turning machines. More specifically we have:

Turning Machine Variants

Consider a Multi-Head Turing Machine. This is a single-tape Turing machine with multiple
read/write heads. However, in every state only one head may be used. Therefore, for k heads we
have a partition of states Q1, Q2, . . . , Qk where each Qi contains the set of states which use the ith
head. For k = 3, we might have something like:

Equivalence

A multi-head Turing machine is equivalent to a normal Turing machine. Let Mmh be a multi-head
Turing machine and Mtm be a normal Turing machine. To show that they are equivalent, we must
provide two arguments.

Argument 1: For any normal Turing machine Mtm, there exists some multi-head Turing machine
Mmh such that L(Mtm) = L(Mmh).

4

To show this, we need to show that Mtm can be simulated by some Mmh. This part of the proof is
simple. We can build Mmh such that it forces all the states to use the same read/write head. The
rest of the heads can be ignored. The states and transitions remain the same as in Mtm.

Argument 2: For any multi-head Turing machine Mmh, there exists some normal Turing machine
Mtm such that L(Mmh) = L(Mtm).

We must show that Mmh can be simulated by some Mtm. This part is trickier. We could do
something similar to the proof for a multi-tape Turing machine, and use some modifier on the
symbols to track where the different heads are located on the tape. For example:

a a ȧ b b b. c c c c’ · · ·

However, we already know multi-tape Turing machines are equivalent to normal Turing machines.
We could alternatively show that for any multi-head Turing machine Mmh, there exists some multi-
tape Turing machine Mmt such that L(Mmh) = L(Mmt).

Lets create a k-tape Turing machine Mmt to simulate a k-head Turing machine Mmh as follows:

1. Initialize every tape in Mmt with the input string.

2. Whenever head i is moved in Mmh, move the head in the ith tape in Mmt.

3. Whenever any head in Mmh writes a symbol, write the same symbol on the same position on
every tape in Mmt.

Everything else would be the same in Mmt as in Mmh. So we would end up with something like:

Since we know L(Mmt) = L(Mtm), we can conclude L(Mmh) = L(Mmt) = L(Mtm). Of course, all
we have given here is an abstract idea of how to do this. The devil is in the details. You need to
convince yourself that every step is correct.

5

	Context-Free Languages
	Pushdown Automata
	Closure Properties
	Example: PDA DFA

	Language Hierarchy
	Turning Machine Variants
	Equivalence

