
ECS120 Introduction to the Theory of Computation
Fall Quarter 2007

Discussion 10 Notes
Wednesday December 05, 2007

This discussion will focus on showing that SUBSET -SUM is NP complete. This is given in
Theorem 7.56 in your book on page 292.

SUBSET -SUM Problem

The SUBSET -SUM problem is defined on pages 268-269 of your book. Formally, it is defined as:

SUBSET -SUM =
{
〈S, t 〉 |S = {x1, . . . , xk } and for some

{ y1, . . . , yl } ⊆ {x1, . . . , xk }, we have
∑

yi = t
}

Informally, we have a set S of numbers. Given a target number t, we want to know if there is a
subset of S which sums to t.

For example, suppose S1 = { 1, 15,−2, 44, 101 } and t1 = 100. Is 〈S1, t1 〉 ∈ SUBSET -SUM? Yes,
there exists a subset { 1,−2, 101 } such that 1 +−2 + 101 = 100 = t1.

Both the sets {x1, . . . , xk } and { y1, . . . , yl } are multisets, which allow repetition of elements.

As formulated here, it may not seem like the SUBSET -SUM problem is interesting or important.
However, forms of the SUBSET -SUM problem show up in cryptography (and in many other
fields). This problem is also related to the knapsack and partition problems. All of these problems
have real-world applications (not just theoretical).

Useful Tools

There are several definitions, theorems, and results we will use to show this is true. We start with
the definition of NP-complete.

Definition 7.34
A language L is NP-complete if it satisfies two conditions:

1. L ∈ NP
2. Every A ∈ NP is polynomial time reducible to L

To show that a language L ∈ NP, the following definition:

NP is the class of languages that have polynomial time verifiers.

A polynomial time verifier is defined on page 265:

1



Definition 7.18
A verifier for a language A is an algorithm V where

A = {w |V accepts 〈w, c 〉 for some string c }.

A polynomial time verifier runs in polynomial time in the length of w.

If you know that (1) L is in NP and (2) A is NP-complete, you can use the following theorem:

Theorem 7.36
If A is NP-complete and A ≤p L for some L ∈ NP, then L is NP-complete.

What does it mean for A ≤p L? This brings us to the definition of a polynomial time mapping
reducibility.

Definition 7.28
A function f : Σ∗ → Σ∗ is a polynomial time computable function if some polynomial time
Turing machine M exists that halts with just f(w) on its tape, when started on any input w.

Definition 7.29
Language A is a polynomial time mapping reducible to language L, written A ≤p L, if a
polynomial time computable function f : Σ∗ → Σ∗ exists, where for every w:

w ∈ A ⇐⇒ f(w) ∈ L

Finally, we are going to need a language that we already know is NP-complete. The book uses the
fact that 3SAT is NP-complete:

Corollary 7.42
3SAT is NP-complete.

The language is defined in your book on page 274 as:

3SAT = { 〈φ 〉 |φ is a satisfiable 3cnf-formula }

A 3cnf-formula (conjunctive normal form-formula) is a Boolean formula that has several or-clauses
with 3 literals each connected by and operations. For example:(

a ∨ b ∨ c
)
∧ · · · ∧ (x ∨ y ∨ z)

Proof Approach

To show that SUBSET -SUM is NP-complete, we need to:

1. Show that SUBSET -SUM ∈ NP.
2. Show that 3SAT ≤p SUBSET -SUM .

When we show the reduction, we’ll need to provide a polynomial time computable function f and
show that 〈φ 〉 ∈ 3SAT ⇐⇒ 〈S, t 〉 ∈ SUBSET -SUM .

2



SUBSET -SUM ∈ NP

As pointed out in our “tool box” a language is in NP if it has a polynomial time verifier. Therefore,
if we can provide a p-time verifier for SUBSET -SUM , we’ve shown it is in NP.

V = “On input 〈 〈S, t 〉, c 〉:
1. Test whether c is a collection of numbers that sum to t.
2. Test whether S contains all the numbers in c.
3. If both tests pass, accept.
4. Otherwise, reject.

This is given as the proof for Theorem 7.25 which states SUBSET -SUM ∈ NP.

3SAT ≤p SUBSET -SUM

From this point on, please refer to my handwritten discussion notes from last year.

3


	SUBSET`SUM Problem
	Useful Tools
	Proof Approach
	SUBSET-SUM is NP
	3SAT, SUBSET-SUM Reduction

