
HW 3 Hints:
Core Dump File
Reader

Discussion Session 11/24 & 11/25
Eric Bergstrom

HW 3: Core files
•Signals are generated from the kernel or by the kill()
syscall from the user-level.

•Process is terminated if a signal is caught that cannot be
handled.

•For the purpose of debugging, the core image of the
process will be stored in a file called “core”.

• data
• stack
• text
• process table entry

Some signals that
generate core files

//generates a core dump via SIGSEGV (memory access violation)
 int main (void) {
 int array[2];
 array[222222] = 1;
 return 0;
}

// generates a core dump via SIGFPE (floating point exception)
int main (void) {

 int i = 0, j = 7;
 j = j / i;
}

HW 3 - Core File
dump_core: described in lines 18399-18468 (pgs 779-780)
under the file src/mm/signal.c.

Three items are being dumped in the following order:

• The memory map of all the segments

• The process table entry for the process being terminated

• The data in every segment

/usr/src/mm/signal.c
/*===*
 * dump_core *
 ===/
PRIVATE void dump_core(rmp)
register struct mproc *rmp; /* whose core is to be dumped */
{
/* Make a core dump on the file "core", if possible. */

 int fd, fake_fd, nr_written, seg, slot;
 char *buf;
 vir_bytes current_sp;
 phys_bytes left; /* careful; 64K might overflow vir_bytes */
 unsigned nr_to_write; /* unsigned for arg to write() but < INT_MAX */
 long trace_data, trace_off;

 slot = (int) (rmp - mproc);

 /* Can core file be written? We are operating in the user's FS environment,
 * so no special permission checks are needed.
 */
 if (rmp->mp_realuid != rmp->mp_effuid) return;
 if ((fd = open(core_name, O_WRONLY | O_CREAT | O_TRUNC | O_NONBLOCK,

CORE_MODE)) < 0) return;
 rmp->mp_sigstatus |= DUMPED;

Memory Maps : /usr/include/minix/type.h
#ifndef _TYPE_H
#define _TYPE_H
#ifndef _MINIX_TYPE_H
#define _MINIX_TYPE_H

/* Type definitions. */
typedef unsigned int vir_clicks; /* virtual addresses and lengths in clicks */
typedef unsigned long phys_bytes;/* physical addresses and lengths in bytes */
typedef unsigned int phys_clicks;/* physical addresses and lengths in clicks */

struct mem_map {
 vir_clicks mem_vir; /* virtual address */
 phys_clicks mem_phys; /* physical address */
 vir_clicks mem_len; /* length */
};

1) The Memory Map of all the segments.

/* Make sure the stack segment is up to date.
 * We don't want adjust() to fail unless current_sp is preposterous,
 * but it might fail due to safety checking. Also, we don't really want
 * the adjust() for sending a signal to fail due to safety checking.
 * Maybe make SAFETY_BYTES a parameter.
 */
 sys_getsp(slot, ¤t_sp);
 adjust(rmp, rmp->mp_seg[D].mem_len, current_sp);

 /* Write the memory map of all segments to begin the core file. */
 if (write(fd, (char *) rmp->mp_seg, (unsigned) sizeof rmp->mp_seg)
 != (unsigned) sizeof rmp->mp_seg) {

close(fd);
return;

 }

/usr/src/mm/signal.c

/usr/src/mm/mproc.h
/* This table has one slot per process. It contains all the memory management
 * information for each process. Among other things, it defines the text, data
 * and stack segments, uids and gids, and various flags. The kernel and file
 * systems have tables that are also indexed by process, with the contents
 * of corresponding slots referring to the same process in all three.
 */

EXTERN struct mproc {
 struct mem_map mp_seg[NR_SEGS];/* points to text, data, stack */
 char mp_exitstatus; /* storage for status when process exits */
 char mp_sigstatus; /* storage for signal # for killed procs */
 pid_t mp_pid; /* process id */
 pid_t mp_procgrp; /* pid of process group (used for signals) */
 pid_t mp_wpid; /* pid this process is waiting for */
 int mp_parent; /* index of parent process */

…code omitted ...

 message mp_reply; /* reply message to be sent to one */
} mproc[NR_PROCS];

2) The Process Table Entry of Process
being terminated

 /* Write out the whole kernel process table entry to get the regs. */
 trace_off = 0;
 while (sys_trace(3, slot, trace_off, &trace_data) == OK) {

if (write(fd, (char *) &trace_data, (unsigned) sizeof (long))
 != (unsigned) sizeof (long)) {

close(fd);
return;

}
trace_off += sizeof (long);

 }

/usr/src/mm/signal.c

sys_trace() traps to
/usr/src/kernel/system.c

sys_trace(3, slot, trace_off, &trace_data)

 ==> /usr/src/lib/syslib/sys_trace.c

sys_trace(req, procnr, addr, *data_ptr)

invokes a _taskcall and gets handled in
system.c: do_trace()

Essentially returns contents of proc entry
from kernel space to MM, returned in
trace_data.

Trace_offset controls loop, when entire proc
structure is copied, it exits loop (reads in
one long at a time).

3) The data in every segment

 /* Loop through segments and write the segments themselves out. */
 for (seg = 0; seg < NR_SEGS; seg++) {

rw_seg(1, fd, slot, seg,
(phys_bytes) rmp->mp_seg[seg].mem_len << CLICK_SHIFT);

 }
 close(fd);
}

/usr/src/mm/signal.c

For the assignment:

This data is not required to be displayed.

For the curious: rw_seg is defined /usr/src/mm/exec.c

Found by using grep command: grep rw_seg *

HW 3: Sample Input / Output

Pass core
filename using
command-line
argument

Display
values from
process
table entry

Using command-line
parameters in C

We will be using a script to test multiple core files in grading so
your program needs to take a core filename as input.

Recall:
#include <stdio.h>

int main (int argc, char *argv[]) {
 printf("Name of executable: %s\n", argv[0]);
 if (argc == 2)
 printf("first commandline parameter: %s\n", argv[1]);
 return 0;
}

System calls needed
int open(char *filename, int flags);

example (opening file for read and write):

int fd = open(filename, O_RDWR);

int read(int fd, void *buf, size_t nbytes);

example (reading into a structure):
struct test {
int a;
char b;
}

struct test b;

read(fd, &b, sizeof(struct test));

More details on man 2 pages.

HW 3: Approaches

(1) Define the proc structure and mem_map structures within
your program.

(2) Or, include the .h files that define the proc structure and
mem_map structures (both of these structures require more than
1 header to include constants that are within the headers)

HW 3: Approaches
After reading in a proc structure, print out the appropriate fields
as defined in assignment:

p_nr
p_int_blocked
p_int_held
p_flag <=== NOTE: p_flag should be p_flags
p_pid
user_time
sys_time
child_utime
child_stime
p_alarm
p_name[16]

HW 3: Approaches
Sample output for a process called mem_violation that dumped
into a file called core.
cc dumper.c -o mem_violation
mem_violation
Memory fault - core dumped
* reader core
contents proc entry recorded in core
p_nr = 7
p_int_blocked = 0
p_int_held = 0
p_flags = 16
p_pid = 351
user_time = 1
sys_time = 10
child_utime = 0
child_stime = 0
p_alarm = 0
p_name = mem_violation
#

